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Learning Outcomes: Upon completing this chapter, students should be able to:

Define multiple sequence alignment (MSA) and its significance as an extension of pairwise alignment.

Articulate the diverse biological applications and advantages of MSA over pairwise comparisons.

Explain various scoring functions used in MSA, including Sum-of-Pairs, entropy, and consistency-based scores, and the role of
sequence weighting.

Describe the principles and limitations of exhaustive, progressive, and iterative MSA algorithms, with a focus on examples like
ClustalW.

Construct and interpret Position-Specific Scoring Matrices (PSSMs), understanding their use in detecting remote homologs (e.g.,
PSI-BLAST).

Explain the architecture, parameterization, and application of Profile Hidden Markov Models (HMMs) for representing MSAs and
enhancing search sensitivity.

Discuss the practical challenges in MSA, such as handling alignment errors, and selecting appropriate parameters.

Utilize Biopython tools for programmatic handling of multiple sequence alignments and associated profile data.

1. Introduction: The Power of Multiple Comparisons

Pairwise sequence alignment (PSA) provides crucial insights into the relationship between two biological sequences. However, when
dealing with families of related sequences, analyzing them two at a time may not give us enough insight. A more powerful approach,
Multiple Sequence Alignment (MSA), allows the (DNA, RNA, or
protein). This method , thereby

While PSA helps identify individual similar regions, MSA synthesizes information from many sequences, providing a more
comprehensive view of conservation and divergence. This process is crucial because "if sequence similarity is weak, pairwise
alignment may not identify biologically related sequences".

2. Goals and Advantages of Multiple Sequence Alignment

MSA offers significant advantages over merely performing numerous pairwise alignments, revealing a richer set of biological
information :

Identification of Conserved Patterns and Motifs: MSA is unparalleled in its ability to

, functionally critical amino acid residues, and specific motifs across an entire sequence family. These insights might be
elusive or ambiguous when comparing only two sequences. For example, in the example provided in Bioinformatics Algorithms, a
multiple alignment of A-domains from non-ribosomal peptide synthetases revealed 19 conserved columns, indicating regions
critical for function. This contrasts with the difficulty of detecting such patterns in weak pairwise alignments.
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A-domains from 3 different bacteria and their alignment. A-domains are enzymes involved in non-ribosomal protein production is

bacteria.

Phylogenetic Analysis: MSA is an essential prerequisite for carrying out robust phylogenetic analysis, enabling the reconstruction
of evolutionary relationships between species or within a protein family. An accurate multiple alignment is the starting point for

constructing a phylogenetic tree.

Structure and Function Prediction: The detailed information from multiple alignments significantly aids in predicting protein
secondary and tertiary structures, as
. If one member of a family has a known structure, that information can be transferred to uncharacterized

members via a multiple alignment.

Resolution of Ambiguities:
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, leading to a more reliable assessment of similarity.

UCCGGU-GAGGUAGUAGGUUGUA-UAGUU- - - -UGG- - - - - - AAUAUUA--CCA.
CCUGGCUGAGGUAGUAGUUUGUG - CUGUUGGUCGGGUU- - - GUGACAUU-GCCC
CCGGGCUGAGGUAGGAGGUUGUA-UAGUU- - - -GAGG- - - - - - AGGACA-CC-C
UUGGGGUGAGGUAGUAGGUUGUA - UAGUUUG- - GGGC ----UCu-Gccc
CCGGGUUGAGGUAGUAGGUUGUA-UGGUUU- - AGAGU -UAC-ACCC
UACGGU - GAGGUAGUAGGUUGUA - UAGUUU - - AGAAU ----AUU-ACUC
UCAGAGUGAGGUAGUAGAUUGUA-UAGUUGU - -GUGAUUUU-ACCC
CUAGGAAGAGGUAGUAGGUUGCA-UAGUUUU - - - -GGGAUUUU-GCCC
-UGGGAUGAGGUAGUAGGUUGUA-UAGUUUU-AGGGU - - - - - - - - - CAC-ACCC
CCAGGCUGAGGUAGUAGUUUGUA- CAGUUUG-AGGGUC - - UAUGAUACC-ACCC
CCAGGUUGAGGUAGUAGGUUGUA-UAGUUU- -AGA- - -------- AUUA-CAUC
----- GUGAGGUAGUAAGUUGUA - UUGUUGU - GGGGUAGGGAUAUUAGG-CCCC
GCAGGCUGAGGUAGUUGGUUGUA-UGGUUUU-GCAUC- - - - - AUAAUCA-GCCU
CCAGGGUGAGGUAGUAAGUUGUA - UUGUUGU - GGGGUAG - GGAUAUUAG-GCCC
UUGGGGUGAGGUAGUAGGUUGUA-UGGUUUU- -
CUGGGUAGAGGUAGUAGGUUGCA-UAGUUUG-
ACAGGGUGAGGUAGUAGGUUGUG-UGGUUUC -
UCAGGGUGAGGUAGUAGGUUGUA- UAGUUUG -
GUGGGAUGAGGUAGUAGAUUGUA-UAGUUUU-AGGGU

GCGGGAUGAGGUAGUAGGUUGUG - UGGUUUC - AGGGGA- - - GUGAUUUUGCCCC
GUAGGAUGAGGUAGUAGAUUGUA-UAGUUGU -
UUGGGGUGAGGUAGUAGGUUGUA- UAGUUUG- -
CCUGGGUGAGGUAGUAGGUUGUA-UAGUGGG-
CCAGGUUGAGGUAGUGGGUUGUA-UAGUUCA-G- -
CUAGGAAGAGGCAGCACGUUGCA-UAGUUCU-
GCAAGUUGAGGUAGUAGGUUAUAUCAGUUGA-U- -
UCUGGU-GAGGUAGUAGGUUGUA-UAGUU- - - -
AUAACAUGAGGUAGUAGGUUAUG - CAGUUUG-GCGAC- - - -
CAGGGU-GAGGUAGUAGACUGUA-UAGUA- - - -
GCAAAUUGAGGUAGUAGGUUGUA - UAGUAGU -A- -

GCAAAUUGAGGUAGUAGGUUGUA-UAGUAGU-A- -

GCUCGAUGAGGUAGUAGGUUGUA-UAGUU - - - - AUGA.
UCUGUUUGAGGUAGUAGGUUGUA-UAGUA- - -
GCAAAUUGAGGUAGUAGGUUGUA - UAGUAGC -A- -

MSA for a the noncoding let-7 RNA family.

---CAUA-CCCC-
ACAGGGUGAGGUAGUAGGUUGUG - UGGUUUC - AGGGUU - - -GUUAUUUU-ACCC -
ACGGGGUGAGGUAGUAGGUUGUG-UGGUUUC -AGGGCG- - -GUGAUGUC-GCCC -
GCGGGGUGAGGUAGUAGGUUGUG - UGGUUUC - AGGGUA- - - GUGAUUUU-GCCC -
CUGGGGUGAGGUAGUAAGUUGUA-UUGUUGU - GGGGUUGGGAUUGUAGA-CCCC-

AAUAUUUC -GUUG-
----AUU-ACAU-

-GUUGUA-CCAU-
[de=
- - - - ACUAAGAAUCGUACUAUACAAUGUGCUAGCUUUCUUUGC

————— CCGGUG- - AACUAUGCAAUUUUCUACCUU-ACCGGA
- -GCUGUGGAGAUAACUGCGCAAGCUACUGCCUU-GCUAGU
-----AAGGAGAUCACUAUACGGCCUCCUAGCUU-UCCCCA
- -UGCUAUGGGAUAACUAUACAAUCUACUGUCUU-UCCUGA
————— UGGGAGUUAACUGUACAACCUUCUAGCUU-UCCUUG
----- UCGGUG- - AACUAUGCAAGUUUCUACCUC-ACCGAA
-UGUUCAGGAGAUAACUAUACAAUCUAUUGCCUU-CCCUGA
- - - ACAAGGAGGUAACUAUACGACCUGCUGCCUU-UCUUAG
ACCACUGGGAGAUAACUAUACAAUCUACUGUCUU-UCCUAA
-GGUACAGGAGAUAACUGUACAGGCCACUGCCUU-GCCAGG
- - - -AAGGGAGAUAACUGUACAGCCUCCUAGCUU-UCCUUG
- - AAUUAGAAGAUAACUAUACAACUUACUACUUU-C- - - - -
——————— GGAGUUAACUGUACAACCUUCUAGCUUUCCCUGC
-CAAUUAGAAGAUAACUAUACAACUUACUACUUU-CCCUGG
--CGCUCUGCGGUAACUAUACAAUCUACUGUCUU-UCCUGA
- - -CAAAGGAGAUAACUAUACAACCUGCUGCCUU-UCCUGG
- -CAUAAGGAGCUAACUAUACAACCUACUGCCUU-CCCUGG
- - ACUCAGGUGAUAACUAUACAGUCUAUUGCCUU-CCCUGA
-AUCUUGGAGAUAACUAUACAGUCUACUGUCUU-UCCCAC
-CAUCGGGAGUUAACUAUACAACCUACUGCCUU-UCCUGG
- -CUCAGCAGAUAACUAUACAGCCUACUGCCUU-CCCUGA
CAAUCAGAAGAUAACUAUACAACCUACUGCCUU-CCCUGA
-AAUUAGAAGAUAACUAUACAACUUACUACUUU-CCCUGG
- - AAUCAGAAGAUAACUAUACAGCCUACUGCCUU-CCCUGG
- -AUCUUGGAGAUAACUAUACAGUCUACUGUCUU-UCCCAC
- -UGCUAUGGGU-AACUAUACAAUCUACUGUCUU-UCCUGA
-AUUAUGGAAUCCACUGUACAACUUGCUAACUU-UCCCGG
-UCAAGGGAGAUAACUGUACAGCCUCCUAGCUU-GCCUUG
-CACUUGGGGGUAACUGUAUGCCCUGCUGCCUG-UCUUAG
- - - ACCAGGAGAUAACUGUAUAGCCCACUAGCUU-ACUUGC
- -ACCUUGGUG- - AACUAUGCAAGUUUCUACCUC-ACCAGA
- - CAAAGGAGAUAACUGUGUAACUUGCUGGCUC -UUUUAY
- CAUUUGGAGG - UACUGUACAAUCUGCUAACUU-UCCCUG
----- AUAGAGCAUACUAUACAGCGUGCUAGCUUUCUUUGC
- -UCUAUCUAGCAUACUAUACAGCUUGCUAGCUUUCUUUGC
- - AAUCGGAGA - AACUGUCCAGCCUGCUAGCUUGCCGUGC
-UAUUGGGAG- -UGCUGUACAGCCUGCUAACUUUCCCAGA

3. Scoring Functions for Multiple Sequence Alignment

To quantitatively assess the quality of an MSA and guide algorithms, specific
the degree of similarity or difference between sequences based on evolutionary principles. This means that we consider the set of all
possible alignments between the sequences involved, assign a score to each, and try to find the one with the highest score.

Some of the most widely used scoring schemes are Sum-of-Pairs, entropy and COFFEE.

Sum-of-Pairs (SP) Score:

Description: The Sum-of-Pairs (SP) score is the most common
alignment is calculated as the sum of similarity scores for

are employed. These aim to measure

. The total score for a multiple
at each alignment position.

Calculation: For each column in the multiple alignment, the score is determined by
. The overall alignment score is then the sum of all these column

Scores.
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between any pairs of sequences (not necessarily the optimal one). From Chapter 3, to this is assigned an alignment score



S(A(oi,05)). Then we define:

S(4) = 3" 5(A(01,07)-

i<j
Note: In an MSA, unlike in a PSA, it is possible for two gaps to be aligned. The alignment score of two gaps is taken to be zero.

Substitution Matrices: Just as in pairwise alignments, MSA utilizes substitution matrices (e.g., BLOSUM, PAM) to assign scores
for aligned residues, reflecting the likelihood of one residue being substituted by another during evolution.
Gap Penalties: Gaps, representing insertions or deletions (indels), are penalized. More sophisticated approaches use position-
specific gap penalties, where the penalty can vary based on the position in the alignment. For example, adaptively
modifies gap penalties to . Affine gap
penalties, which distinguish between a gap opening penalty and a gap extension penalty, are often more realistic.
Sequence Weighting: Not all sequences in an alignment contribute equally informative data. To
(e.g., ), sequence weighting schemes are used. These
weights are often derived from a phylogenetic guide tree, with more divergent sequences given higher weights.
Entropy Score: An alternative scoring approach utilizes entropy. The
(lower entropy means higher conservation). The score of a multiple alignment can be defined as the sum of the
entropies of its columns, so that more highly conserved columns (with lower entropy) receive higher scores.
COFFEE (Consistency-based Objective Function For alignmEnt Evaluation): This scoring system uses a reference library of
all possible pairwise alignments between the sequences in the MSA. The score for a multiple alignment is based on the
. This approach
relies on the principle that
This approach is used by programs like T-Coffee.

Entropy

Entropy (H) is fundamentally a measure of the uncertainty of a probability distribution. Roughly speaking it equals the number of bits
needed for encoding the distribution.

When applied to sequence analysis, every column of a profile matrix (which represents the frequencies of residues at each position of
an alignment) corresponds to a probability distribution (a collection of non-negative numbers that sum to 1).

For a probability distribution (p1, ..., pn), the entropy is defined by the formula:
N
H(py,..-,pn) = — Y p; - logy(p;)-
=1

In the case of sequences, N is typically 4 for nucleotides (A, C, G, T) or 20 for amino acids, and p; is the frequency (f..) of residue
type ¢ in column w.
Important Notes on Calculation:

If P(z;) (the probability of event z;) is zero, the term P(z;) - log, P(z;) is assumed to be equal to zero.

When the logarithm base used is 2, the entropy is measured in units of bits.

The maximum uncertainty H,,,, is achieved when each one of the N classes have the same probability and it equals

H,,.. = log, N. (This can be proved using the concavity of the logarithm.) It equals 2 bits for nucleotides and approximately 4.32
bits for protein sequences.

Interpretation of the Entropy Value

The value of the entropy score reflects the degree of conservation within a column:

Minimum Entropy (Maximum Conservation): If a column is completely conserved (only one residue type present, meaning its
probability is 1), the uncertainty is zero, and thus the entropy is 0.

Maximum Entropy (Minimum Conservation): If all possible residues are equally likely (e.g., probability 1/4 for each of the four
nucleotides), the entropy reaches its maximum possible value, which is 2 for DNA.

In general, the more conserved the column, the smaller its entropy.



4. Multiple Sequence Alignment Algorithms

Due to the extreme computational complexity of exhaustive algorithms, heuristic methods are predominantly used for MSA.

Exhaustive Algorithms:

Description: This is an extension of dynamic programming, using an n-dimensional matrix for 7 sequences. For example, the

alignment graph for three sequences is a grid of cubes, where each node can have up to seven incoming edges (representing

matches or various gap combinations).

Limitation: While it guarantees finding the optimal alignment, this method is computationally prohibitive for more than a few
sequences due to exponential increases in time and memory requirements.

Heuristic Algorithms: These methods are faster but do not guarantee finding the absolute optimal alignment.

Progressive Alignment Method: This is the for MSA, assembling the multiple alignment in
a stepwise fashion based on pairwise similarities.

Pairwise Alignments: are globally aligned (e.g., using Needleman-Wunsch) to obtain
similarity scores.
Guide Tree Construction: A phylogenetic tree (e.g., using neighbor-joining or more precisely )is
constructed from the alignment scores of the sequences. This "guide tree" represents the evolutionary relationships and

. In the initial stage of clustering, each
sequence is a cluster of its own. At each stage, the two clusters with the highest similarity are merged and this is depicted by
two subtrees joining together in the tree. The similarity of two clusters is defined to be the average similarity (pairwise
alignment score) of all the pairs of sequences in them.
Sequential Alignment: The most similar sequences/groups (branches of the guide tree) are aligned first. Then, new
sequences or intermediate alignments are progressively added, following the hierarchy of the guide tree. This involves

aligning a sequence to an existing alignment (represented by a ).
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Clustal (ClustalW/X/Omega): A widely used progressive alignment program. ClustalW adaptively uses different substitution
matrices (e.g., ) and position-
specific gap penalties to improve sensitivity.

Limitation: "Error Fixation": A major drawback of progressive alignment is "error fixation" (also called "greediness").

, even if subsequent comparisons suggest a different alignment would be better.
Improvements: Programs like T-Coffee (which uses a consistency-based objective function called COFFEE, to combine
global and local alignments) and Praline (which incorporates protein secondary structure information for higher accuracy)
have been developed to address Clustal's limitations.

Iterative Alignment Method: Aims to refine suboptimal alignments through repetitive cycles. This involves removing
sequences from an existing alignment and realigning them, or splitting the alignment into subsets and realigning them, until no
further improvement is observed.

Genetic Algorithms: The SAGA (Sequence Alignment by Genetic Algorithm) method optimizes the complete alignment by
considering all sequences simultaneously using a genetic programming technique, which searches for an optimal solution in a
vast search space. It is however not widely used anymore.
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5. Iterative Alignment

Iterative alignment is a heuristic approach used in multiple sequence alignment (MSA) that seeks to find an optimal solution by
repeatedly modifying existing suboptimal solutions. This method attempts to overcome the limitation of "error fixation" inherent in
progressive alignment strategies. It does this by ensuring that the order of sequences used for alignment is varied in each iteration.

The procedure for iterative alignment generally follows these steps:

Initial Alignment (Suboptimal Solution): The process begins by producing a low-quality (sub-optimal) alignment. This initial
alignment may sometimes be

Iterative Refinement: The quality of this initial alignment is gradually improved by iterative realignment through predefined
procedures (below). The iteration continues until no further improvements in the overall alignment scores can be achieved.

Removing and Realigning Sequences

A simple method involves producing an initial multiple alignment, and then, repeatedly, each sequence in turn is removed and
realigned to the remaining alignment (the latter as a profile). When a sequence is realigned, all details of its previous alignment to
the other sequences are removed, but the other sequences are kept as before. This cycle continues until no further change is
observed.

PRRN Program

The sequences are randomly divided into two groups.

Random alignment is used for each group in the initial cycle, and subsequently, the alignment positions in each group are fixed.
The two groups are then aligned to each other using global dynamic programming, treating each group as a single sequence
(more precisely a ).

This process is repeated through many cycles until the total Sum-of-Pairs (SP) score stops increasing.

6. Profiles

Profiles and PSSMs are statistical models that capture the
. They serve as a refined consensus for a sequence family and are highly effective for detecting
distant homologs.

6.1 Profiles

A profile is a statistical summary of a multiple sequence alignment (MSA). It captures, at each column (position), how frequently
each residue (or nucleotide/amino acid) appears, and thus represents the consensus pattern of a family of related sequences.

A profile represents the “character” of each position in an alignment — what residues are likely there, and how variable the position is.
This allows us to move from comparing raw sequences to comparing patterns of conservation and variability, which is far more
powerful biologically.

In MSA instead of aligning sequences to each other, you can align a sequence to a profile — or even two profiles together.

Suppose you have this protein MSA:

Position Seq1 Seq2 Seq3 Seq4
1 M M M L

2 A A S A
3 G G G G
4 K R K K

We can summarize each position as a frequency distribution over amino acids:

Position A G K L M R S
1 0 0 0 025 075 O 0
2 075 0 0 0 0 0 0.25


https://www.genome.jp/tools-bin/prrn

Position A G K L M R S
3 0 1.0 0 0 0 0 0
4 0 0 075 0 0 025 O

We can denote p(A|2) = 0.75 or p(S|2) = 0.25.
Optionally, we can include gap frequencies per position too.

The of a profile is the sequence made by taking, at each column, the most common residue (nucleotide or
amino acid) among all aligned sequences.

Profile—Profile Alignment

Profiles are crucial in progressive alignment strategies. When combining two clusters (sub-alignments), we compute their profiles
first, then align the two profiles.

Remember that if A is an alignment between two sequences, then at each position : we have two residues (or gaps): 4;(z), A»(¢), and
the score of the alignment is >, s(A4:(%), A2(¢)), where s is the substitution score.

An alignment between profiles is similar, i.e. it gives a matching of the positions of the two profiles. Note that when a gap is introduced
in the alignment of two profiles, it is regarded as a i.e. it has probability 1 in its respective profile.

Scoring an alignment of two profiles is similar, with the difference that now A4, (i) and A,(%) are probability distributions, over the bases,
which we denote by py4,(;)(a) and p4,;)(b) and we have to take these probabilities into account:

S(A) =D 3> pai(a) - pay(®) - s(a,b)
i a b

where s(a, b) is the substitution score of the bases (or gaps) a, b, and the first sum is over the positions in the alignment. As in the case
of aligning two sequences, we want to find the alignment A that gives us the best score.

Finding the best alignment of two profiles can be done using DP algorithm. The algorithm is exactly the same, except for the fact that
now in the DP matrix we record the scores that are computed using the above formula.

Note that since each profile comes from a different MSA,

7. Position-Specific Scoring Matrices (PSSMs) and PSI-BLAST

A Position-Specific Scoring Matrix (PSSM), *often used interchangeably with the term profile*, is a
designed for sequence alignment. PSSMs, unlike profiles, do not include gaps.

7.1. Definition and Purpose

PSSMs are sophisticated scoring schemes that capture the common features, or consensus, of a sequence family.

along the sequence.

PSSMs are primarily derived from an ungapped multiple sequence alignment. They serve three key purposes:

Quantifying Conservation: They provide a quantitative description of the degree of sequence conservation at each position of a
multiple alignment.

Enhanced Sensitivity: By modeling the residue preferences at specific locations, PSSMs allow for partial matches and are
significantly more sensitive in detecting remote sequence homologs than regular sequence alignment methods.

Scoring Alignment: They can be used to test

7.2. PSSM Construction

PSSMs are constructed very similar to profiles, by translating the information contained within a multiple sequence alignment into a
probabilistic scoring table. The values contained within the matrix are the log-odds scores of the residues calculated from the multiple
alignment. This reflects the statistical probability of a particular symbol occurring at a specific position relative to its expected chance
occurrence (the background frequency).



Position 123456
Sequence | ATGTCG
Sequence2 AAGACT
Sequence3 TACTCA
Sequence4d  CGGAGG
Sequence 5 AACCTG

Convert multiple alignment
to a raw frequency table

Pos| 1 2|3 |a|5]|6 Ofvree:l‘f"
A (06|06 — 04| — |02 0.30

T [02]|02| —]|04]02] 02 0.20

G |—]|]02|]06]—]02]06 0.27

C (02| —]|04]02]|06| — 0.23

@ Normalize the values by
dividing them by overall freq.

Pos| 1 |2 |3 |a|5|6 Ofvr';'(‘:"
A 201 20| — | 1.33) — | 0.67 0.30

T 101 10| — ] 20] 1.0 1.0 0.20

G — [ 0.74] 2.22| — |0.74( 2.22 0.27

C |087| — |1.74]087|261| — 0.23

Convert the values
to log to base of 2

10110 — (041 — [-058
00100 — | 10] 00| 00

-043| 1.15| — [-0.43

19

alala|»
|

02| — | 08]-02)]138] —

Counting Frequencies: Calculate the raw frequencies of each residue (amino acid or nucleotide) at each position (column) of the
multiple alignment.

Normalization: Normalize the frequencies by dividing the positional frequencies of each residue by the overall frequencies
(background frequencies).
Log-Odds Conversion: Convert these ratios into log-odds scores (e.g., using log,). If ¢, , is the probability of residue type a

occurring in position u of the PSSM (derived from the multiple alignment data, potentially with weighting and pseudocounts), and p,
is the probability of residue type a occurring randomly (the ), then:

Qu,a
Suq = logy ( >
Da

Note that 24« tells us how likely it is to see the base a in position « compared to random chance (p,).
Positive Score (s, > 0) indicates that the

A positive value means the probability of those residues being aligned is greater under the
nonrandom (evolutionary) model.

Zero Score (s, , = 0) means the frequency of the residue occurrence is equal to that expected by random chance.

Negative Score (s, , < 0) indicates that the frequency of the residue occurrence is less than would have occurred by random
chance.

Handling Data Shortages (Pseudocounts): The scores are often calculated from a limited number of closely related sequences.
If a particular residue type is not observed in a column, the resulting score for aligning that residue type would be —oo, which is
overly restrictive and likely indicates a lack of sufficient data. To overcome this, pseudocounts are used. Pseudocounts are extra
weights assigned to unobserved residues. This can be done e.g. by adding a constant number (e.g. 1) to each element of the
count matrix.

Sequence Weighting: To ensure that highly similar or overrepresented sequences do not bias the calculation, weighting
schemes are applied.



Divergent sequences, which provide valuable information about acceptable residue alternatives, are upweighted, while closely

related sequences are downweighted. This weighting scheme makes the PSSM less biased and more sensitive to detecting
distantly related sequences.

7.3. Example of PSSM Scoring

The PSSM acts as a quantitative model for the entire sequence family. Once constructed, it can be used to score a new sequence:

Match AACTCG in the matrix

Find nucleotides
at respective pos.
of the matrix

Pos| 1 |2 |3|a|5]|6
L~

A [(0X0) — [oa] —[-0s8

T 0.0 | 0.0 —_ 1.0) 0.0 0.0

6 | — [oas]11s] — 043|015
02 — 02 3! —_

o 0.2 0.8 0.2(1.38

Calculate the sum
of log odds scores
10+1.0+08+ 1.0+ 138+ 1.15=6.33

How a new sequence might be scored against a PSSM derived from a DNA multiple alignment.

For a new sequence (e.g., AACTCG):

The PSSM values (log-odds scores) corresponding to the residue matches at each position are summed up.
The total score (e.g., 6.33 in the conceptual example) can be interpreted as the
(e.g., 2533, or 80 times more likely than random chance if using log,).

7.4. Position-Specific Iterative BLAST (PSI-BLAST)

PSI-BLAST is the practical and automated application of PSSMs/profiles in searching sequence databases. In PSI-BLAST, the
substitution matrix is computed as a PSSM from aligning the sequences found (hits), in an iterative way. This dramatically increases

the sensitivity by shifting the search strategy from generic sequence similarity comparison to position-specific scoring based on the
known conservation patterns of a protein family.

PSI-BLAST builds and refines profiles in an iterative fashion to find remote sequence homologs.

Query sequence

] BLAST search

Sequence homologs

] Multiple alignment

ACDE..

Profile

B

] BLAST search

Additional homologs

Process

I Incorporated in profile
iterated

ACDE..

New profile

ves W =




The process typically involves the following steps:

Initial Search (Round 1): A standard BLASTP search is performed using a single query protein sequence against the database
(e.g., using the BLOSUM-62 substitution matrix).

Identification of Significant Hits: The program identifies high-scoring hits (related sequences) whose BLAST scores give an E-
value (expectation value) below a predetermined, often stringent, threshold (e.g., 0.005 by default in some implementations).
These hits are used to form an initial multiple alignment.

Profile Generation (PSSM): The sequence alignments of these significant matches with the query sequence are used to construct
a PSSM (profile).

Note on PSSM Length: The PSSM length is
Note on Gaps: Gaps are handled as they are in standard BLAST, meaning the
Gap-heavy columns are deleted before computing the PSSM.

Iterative Search (Round N): The for the subsequent BLAST search of
the database. This search identifies new sequences This means that instead of using a single sequence for
searching the database, we compute the similarities of the sequences in the database to the PSSM.

Refinement and Convergence: If new significant sequence hits are found, they are combined with the previous results to update
and refine the PSSM. This iterative process repeats until no new sequences are found or a limited number of cycles (often 3 to 5)
are run.

Enhanced Sensitivity and Statistical Reliability

PSI-BLAST has proven to be extremely successful and is often notably more sensitive than traditional BLAST or the rigorous Smith-
Waterman method,

PSI-BLAST is estimated to identify about three times more homologs than regular BLAST, particularly sequences that fall within
the range of less than 30% sequence identity.

The alignment data used for PSSM construction are restricted to only those sequences that have residues aligned at that specific
position in the query sequence.

The scoring statistics for PSI-BLAST are carefully controlled and scaled to be the same as those derived for standard BLAST. This
ensures that the significance measures, such as the E-value, are readily available and reliable for determining which new
sequences qualify as significant matches and should be included in the next PSSM recalculation.

Caution (Profile Drift)
The high sensitivity of PSI-BLAST carries the risk of low selectivity, leading to profile drift.

Profile Drift: If sequences that are genuinely unrelated to the query (false positives) are mistakenly included in the construction of
the profile, the PSSM becomes biased. This error is then propagated and compounded in subsequent cycles, potentially leading
the profile to drift away from the original family characteristics.
Mitigation: To minimize profile drift, users are typically advised to

. It is also recommended to conduct a limited number of cycles (e.g., three to
five) instead of waiting for full convergence.

8. Profile Hidden Markov Models

Hidden Markov Models (HMMs) provide one of the most sophisticated and statistically rigorous methods for modeling biological
sequence information, particularly for aligning sequences against profiles and detecting remote homology within sequence families.
HMMs are fundamentally rooted in probabilistic theory and are considered a key technique in multiple sequence analysis.

8.1. Motivation: detecting remote homologs and modeling protein families

In molecular biology, one of the central challenges is to detect remote homologs — sequences that share a common ancestor but
have diverged so much that pairwise sequence alignment fails to reveal their similarity.



Conventional tools like BLAST rely on pairwise comparisons and global substitution matrices (like BLOSUM or PAM), which
capture average substitution tendencies across all proteins. However, they treat every alignment position equally — an assumption
that often fails for biological sequences, where some positions are highly conserved (e.g., catalytic residues), while others tolerate
extensive variation.

To overcome this limitation, we move from global substitution matrices to position-specific models. The first step in this direction is
the Position-Specific Scoring Matrix (PSSM) used in PSI-BLAST, which assigns a distinct score for each amino acid at each
alignment position.

Profile Hidden Markov Models (profile HMMs) take this idea further — embedding the position-specific scoring concept within a
probabilistic generative framework that can explicitly model insertions, deletions, and variable alignment lengths.

8.2. What is a Profile HMM?

A profile HMM is a probabilistic model designed to represent the sequence variability (or
nucleic acids).
It captures . - Profile HMM

generalizes what PSSM does, but it also models insertions and deletions probabilistically.
Conceptually, it is a sequence-to-model alignment machine that answers two questions:
How well does a sequence fit the profile? — quantified by a probability or log-odds score.

How should the sequence be aligned to the family consensus? — determined by the most probable path through the model.
(Viterbi Algorithm)

8.3. Structure of a Profile HMM

A typical profile HMM consists of a series of modules, one per in the alignment, each containing:

Each Match (M) state corresponds to a column of the MSA, i.e. one without many gaps.
Insertion (l) states handle extra residues

Deletion (D) states handle missing residues.

a Match state M;: "emits" residues consistent with the consensus column

an Insert state I;: "emits" residues found in insertions

a Delete state D;: skips this match position (models deletions)

Additionally, there are:

a Begin state (B), and
an End state (E).

Every state also has emission probabilities e;(a) over amino acids (or nucleotides).

8.4. Building a Profile HMM from a Multiple Sequence Alignment (MSA)



The foundation of a profile HMM is a multiple sequence alignment of known homologs.

A. Sequence alignment
N ¢ F
N  F
N K ¥
Q « W

} e
- —-wnn

RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

. match state ’insert state . delete state — transition probability

Each column in the model represents the possibility of a match/mismatch, insertion or deletion in a column in the MSA. Each arrow
represents a probability.
Each path from the BEG to END produces a sequence, each with a probability.

Think: how is the sequence NKYLT obtained from the HMM of the above profile? What about the sequence QWT and NYAFLLS?

Step 1. Identify match positions

Columns with fewer than a threshold proportion of gaps (typically 50%) are designated as match states.
Columns with frequent gaps represent insertions.

Example MSA:

Seq Alignment
ACGT
ACAT
A-AT
ACGT

A ODN -

Here, columns 1, 2, and 4 are likely match columns, while insertions might occur between columns 2 and 3.

Step 2. Estimate emission probabilities
This part is similar to what we did for PSSMs.

For each match state (1M;):

ni(a) + ai(a)
0 = N, 15, oula)

where:

n;(a) is the count of amino acid ( a ) in column ¢,

ai(a) are pseudocounts and can be taken to be a small number,
and N; =, ni(a).

This captures the position-specific residue propensities.

Step 3. Estimate transition probabilities

From the alignment, each sequence can be represented as a path through match, insert, and delete states.
By counting transitions between these states across all sequences, we estimate transition probabilities:

by = cx-y + Bxoy
Ly =
> yilexoy + Bxoyr)




where cx_,y is the count of and Bx_,y is a pseudocount.

Step 4. Set background frequencies

A background model ¢(a) defines the expected frequencies of amino acids in unrelated sequences.
When evaluating a new sequence, we score it using log-odds ratios comparing emission probabilities to this background.

8.5. Applications of Profile HMM

Task Algorithm Description
Scoring (total likelihood) Forward  Sums over all paths; used for E-values.
Alignment (best path) Viterbi Finds the most probable path; used to output alignment.

(a) Scoring a sequence

Given a new sequence g, the profile HMM can compute:

Total probability P(¢|HMM) via the Forward algorithm — summing over all possible paths that produce o.

(b) Aligning sequences

The Viterbi algorithm identifies .
This path directly corresponds to the *optimal alignment of the query sequence to the profile* — indicating which residues align to
which consensus positions, and where insertions/deletions occur.

For example imagine the following profile:
Profile: ACGT
Seq:AC-T

If the optimal path is M1 M2 D3 M4, then we know that residue 3 was deleted relative to the model consensus.
8.7. Example Computation

Step 1. Multiple sequence alignment (MSA)

Let's say we have this simple MSA of four short protein fragments (aligned):

Seq Alignment

S1 ACGT
S2 AC-T
S3 ACGT
S4 A-GT
Columns:
Position 1 2 3 4

Residues A/A/A/A C/C/C/- G/-IGIG T/T/TIT

Step 2. Identify match, insertion, deletion columns

Let's assume columns with 250% residues (not gaps) are “match states”.

Column Fraction residues Type

1 4/4=1.0 M1
2 3/4=0.75 M2
3 3/4=0.75 M3
4 4/4=1.0 M4

We have Match states M1-M4 and potential Insert/Deletion states between them:



Begin » M1 » M2 » M3 > M4 > End
d { {
I1 I2 I3

Deletions are modeled implicitly when sequences skip a match state.

Step 3. Derive emission probabilities

For each match state, count residues (excluding gaps):

State Residues observed Emission probabilities

M1 AAAA P(A)=1.0
M2 CCC P(C)=1.0
M3 GGG P(G)=1.0
M& TTTT P(T)=1.0

For simplicity, we’ll assume uniform emission (0.25 each) for all insertion states 11—13.

Step 4. Transition probabilities

We can estimate from how sequences move through the MSA.

In a profile HMM, each match (M), insert (I), and delete (D) state can transition to others, e.g.:
M>M M>I M>D

I->I,I>MN
D>D, D>MNM

Each outgoing edge has a probability that must sum to 1.
To estimate these probabilities, we look at how the aligned sequences actually move through the MSA. This means, for each
sequence, we can trace which state transitions it follows:

Sequence State Path

S1 M1 — M2 —» M3 — M4
S2 M1 — M2 — D3 — M4
S3 M1 — M2 —» M3 — M4
S4 M1 — D2 — M3 — M4

Counting transitions

Let's see what happens after each state across all sequences:

From->To Count Explanation

M1—->M2 3 S1, 82, S3

M1 —-D2 1 S4 skipped column 2

M2 - M3 2 S1, 83

M2 - D3 1 S2 skipped column 3

D2 ->M3 1 S4 resumed at col 3

D3—->M4 1 S2 resumed at col 4

M3 —>M4 3 S1, S3, S4

M4 — End 4 all sequences end
Normalizing within each state

For example, from M1 we saw:

3 transitions to M2



1 transition to D2

Total = 4. So:

1
=0.75, P(M1— D2) =

3
P(M1 — M2) = 1

Similarly, from M2:
2 1
P(M2 — M3) = 3 =067, P(M2-D3)=_ =033

If no transitions into an insertion were observed, we can still assign a small (say 0.05) to M—| transitions to allow
insertions at that position.

In practice, real HMM software (like HMMER) adds pseudocounts to avoid zero probabilities.

For this example, you can just assign small values to unobserved paths:

Transition Approx. probability

M—M ~0.8-0.9
M—D ~0.05-0.15
M—l| small, ~0.05
-l 0.5

I-M 0.5

Intuitive meaning:

M—M high (~0.9) — most positions continue normally.
M—D or M-l low (~0.05) — insertions/deletions are relatively rare.
I-1=1-M = 0.5 — insertions may continue or return to match with equal chance. These probabilities are usually taken to be

equal.
Transition Meaning Approx. probability
M—M continue normally 0.9
M-I insert extra residue 0.05
M—D skip next match 0.05
-l continue insertion 0.5
1-M return to match 0.5

Step 5. Example sequence scoring by hand
Let's score these new sequences:

Query: ACGT — expected to align well

Query2: AGT — has a deletion at position 2

Query3: ACGAT — has an insertion (extra A)

Example 1 — ACGT

This follows the model perfectly: M1—-M2—M3—M4.
Each match emits its preferred residue with P=1.0, and transitions M—M have 0.9 probability each.
Total (simplified log-odds score):

Score = log,(0.9% x 1) = log,(0.9%) = log,(0.729) ~ —0.46 bits

Almost perfect alignment!

Example 2 — AGT (missing column 2)

That's a deletion at M2.
Path: M1 —- D2 —- M3 — M4



Transition includes one M—D (0.05), two M—M (0.9 each):
Score = log,(0.05 x 0.9%) = log,(0.05 x 0.81) = log,(0.0405) ~ —4.63 bits

Much lower — penalized for skipping a column.

Example 3 — ACGAT (extra A between G and T)
That’s an insertion before M4: M1->M2—M3—13—-M4

Score = log,(0.9% x 0.05 x 0.5 x 0.9) = log,(0.0182) ~ —5.78 bits

The insertion is tolerated but penalized.

8.8. Detecting a remote homolog

Suppose you build a profile HMM for a protein kinase domain from a curated MSA of known kinases.
When you search a protein database with this HMM, it may detect a weakly similar sequence with 20% identity that BLAST misses.

The profile HMM has position-specific expectations (e.g., glycine is tolerated at one site, but conserved lysine at another).
It models insertions and deletions where they biologically occur.
It integrates probabilistic evidence across all positions, rather than relying on local substitution scores.

Thus, profile HMMs are among the most powerful tools for remote homology detection.

Profile HMMs unify several key ideas:

The position-specific scoring power of PSSMs,
The probabilistic rigor of Hidden Markov Models,
And the structural flexibility needed to model biological sequence variation.

8.9. Profile HMMs in bioinformatics tools

Tool Function

HMMER Builds and searches profile HMMs for protein or RNA families.
Pfam A database of curated protein domain HMMs built using HMMER.
Infernal Uses profile HMMs for structured RNA families.

When you query a sequence against Pfam, HMMER:

Aligns the sequence to each domain model using Viterbi algorithm,
Computes a significance score using Forward algorithm,
Reports matches above a calibrated threshold.

9. Biopython for Multiple Sequence Alignment and Profiles: Automating
Analysis

The Biopython library provides robust tools for handling multiple sequence alignments and related profile data, crucial for automating
bioinformatics workflows.

Bio.AlignIO Module: This module is central for reading and writing multiple sequence alignment files in various formats (e.g.,
Stockholm, PHYLIP, NEXUS, EMBOSS).

Bio.AlignIO.read() : For files containing a single alignment.

Bio.AlignIO.parse() : Returns an iterator for files containing multiple alignments (e.g., from PHYLIP's seqboot or EMBOSS
tools).

MultipleSegAlignment Objects:



Data Representation: A MultipleSeqAlignment object holds the alignment data internally as a matrix of SeqRecord objects,
where each row is a sequence, potentially with gap characters, ensuring all sequence strings are the same length. SeqRecord
objects allow for rich annotation associated with each sequence.

Challenges with Multiple Alignments in One File: Sometimes, a FASTA file might contain what appears to be multiple alignments
with repeated identifiers or varying lengths. Bio.AlignIO.parse() can help interpret these (Biopython examples 19, 20).

Getting Information from Alignments:

alignment.substitutions : This property reports how often letters in the alignment are substituted for each other. It calculates
this by taking all pairs of rows, counting aligned letter pairs, and summing over all pairs. This can be used to derive custom
substitution matrices, similar to the process for BLOSUM matrices.

Bio.Align.Applications wrappers: Biopython provides wrappers for common command-line multiple sequence alignment
tools like ClustalW and MUSCLE, allowing their integration into Python scripts.

Practical Applications: Biopython can be used to manage and analyze the output of tools that create profiles (like HMMER) or
multiple alignments (like T-Coffee or ClustalW).

Conclusion:

Multiple sequence alignment, from its exhaustive theoretical underpinnings to its widely used heuristic implementations, stands as a
cornerstone of bioinformatics. It provides unparalleled power to discern subtle evolutionary signals, identify functionally critical
residues, and infer structural characteristics that would remain hidden in pairwise comparisons. Enhanced by the development of
sophisticated profile-based methods like PSSMs and HMMs, MSA continues to drive the discovery of remote homologs and unravel
the intricate stories of protein families. Coupled with practical tools like Biopython, this chapter equips students to leverage MSA for
profound biological insights in the genomics and proteomics era.

Exercises

Compute the SP Score of the following alignment (take gap penalty and mismatch score to be -1):

AUUGC

-UGC-

A-GGU

List all the possible alignments (of length 3) between the three sequences GKN, TR and HE. Compute the score of each alignment
using the PAM250 matrix. Set gap penalty to -5. Which alignment has the highest score?

Consider the two profiles given by the alignments A-CT, AGCT on one hand and ACT, ACG on the other. Compute the profile for
each, align the two profiles (by considering all their alignments of length 4) and construct the resulting MSA.

Exercise: Imagine the following alignment between 5 sequences. Compute the entropy of each column and obtain the entropy of
the whole alignment.

ATC

ATT

CTC

GAG

TAC

Consider the following DNA sequences. Align these "by hand" using Progressive Alignment. Take mismatch and gap penalties
equal to -1.

S1=ATGC

S2 =ATGT

S3=AGTC

S4 = GCTA

Design a Python data structure for storing an alignment of multiple sequences and another one for storing a profile.

Write a Python function for computing the score of an MSA.

Write a Python function for implementing DP algorithm for aligning 3 sequences.

Write a Python function that takes an MSA and returns the corresponding profile.

Write a Python function for aligning two profiles.

Write a Python function implementing a simplified Progressive Alignment of sequences.



Imagine A, B are two profiles. We can sample sequences o1, 0, from either one, according to the probabilities of each position. We
can then align o4, 05 using the DP algorithm and obtain an alignment score. Imagine we repeat this process many times and take
the average of the alignment scores obtained. Is this average equal to the alignment score of the two profiles A, B (obtained by

aligning the two using the DP algorithm)?
Implement the DP algorithm for aligning two profiles.
Why error fixation does not occur for iterative alignment methods?

Implement a simple PRRN alignment algorithm.



