Chapter 3-Pairwise Sequence Alignment - Unveiling Evolutionary
Stories from Biological Sequences

Reza Rezazadegan
Shiraz University
www.dreamintelligent.com

Learning Outcomes:

Define pairwise sequence alignment and its fundamental role in bioinformatics.

Differentiate between sequence similarity, identity, and homology, and discuss the "twilight zone" of sequence alignments.
Compare and contrast global and local alignment strategies, identifying appropriate applications for each.

Explain the principles of the dot matrix method, and details of dynamic programming (Needleman-Wunsch and Smith-Waterman),
for sequence alignment.

Describe the construction and application of substitution matrices (PAM and BLOSUM) and various gap penalty schemes.
Assess the statistical significance of alignment scores using P-values.

Discuss practical challenges in sequence alignment, including computational efficiency, low-complexity regions, and the choice
between DNA and protein sequence comparison.

Utilize Biopython tools for performing and analyzing pairwise sequence alignments.

1. Introduction: The Language of Life and How We Read It

Bioinformatics, at its heart, is about making sense of the vast amount of biological data generated by modern sequencing technologies.
One of the most fundamental operations in this field is Pairwise Sequence Alignment (PSA), a technique used to compare two
biological sequences — whether they are — by searching for common character patterns and establishing a
residue-to-residue correspondence. This process is not merely an academic exercise; it's the bedrock upon which more sophisticated
analyses, such as and , are built.

The ultimate goal of PSA is to find the best possible pairing of two sequences that maximizes the agreement among their residues.
This often requires introducing into one or both sequences to account for insertions or deletions that have occurred over
evolutionary time.

Imagine trying to compare two ancient manuscripts that were copied from the same original, but
, and another added some commentary. To find the true similarities, you'd need to shift parts of the text and insert blanks where
words are missing. Sequence alignment does precisely this for biological sequences.

Note: alignment between two sequences is any way of matching their bases, possibly with mismatches and inserting gaps.
two sequences means finding the possible alignment between the two, i.e. the one with the highest , to be defined
precisely below.

Note: Biological sequences are a type of . Other types of such data include: text, code, musical notes and time series.
As such, they can also be studied using the tools that are typically used for sequential data such as the
Student presentation topic

2. Evolutionary Basis and Key Concepts: Tracing Ancestry

The profound importance of PSA stems from its deep connection to evolutionary theory. Sequences that are significantly similar are
not just coincidentally alike; they are generally presumed to share a common evolutionary ancestor, a relationship known as
homology.

Fundamental question in PSA: whether the similarities perceived between two sequences are due to chance, and are thus of little
biological significance, or whether they are due to the derivation of the sequences from a common ancestral sequence, and are
thus homologous.

Because homology implies common ancestor, knowing the function/structure of one of two homologous two proteins, can help us
infer the structure of the other.

http://www.dreamintelligent.com/

Homology vs. Similarity — An Inferred Relationship: It's crucial to understand the distinction between similarity and homology.
Similarity is a quantitative observation derived directly from an alignment (e.g., "70% of residues match"). Homology, however,
is an inference about shared ancestry based on that observed similarity. Two sequences are either homologous or not; there are
no degrees of homology. Remember that evolution arises from the mutations that occur during DNA replications.
Low sequence similarity does not necessarily rule out common function or homology.
Sequences can also be significantly similar to each other, and yet not be evolutionarily homologous, as a result of

for similar function.
Comparisons of protein sequences show up homology more easily than comparisons of the corresponding DNA sequences: 4
nucleotides vs 20 amino acids, genetic code is redundant.

Historical Context: The Hemoglobin Riddle: In 1965, Emile Zuckerkand| and Linus Pauling published a groundbreaking

paper, Their discovery of high
amino acid ignited debate. Many biologists, accustomed to
anatomical comparisons, were . This

"hemoglobin riddle" helped shift the scientific paradigm, establishing molecular data as a powerful tool for understanding
evolutionary relationships. It's a prime example of how observed sequence similarity leads to the inference of homology.

Sequence Identity and Similarity — The Specifics:
Sequence identity refers specifically to the percentage of sequence residues in an alignment.
Sequence similarity is a broader measure, encompassing both identical matches and "conservative substitutions."

(e.9.,
swapping isoleucine for valine, or phenylalanine for tyrosine, see Fig. 2.3 in Understanding Bioinformatics). This acknowledges
that . For example, a small, nonpolar amino acid replacing another small,
nonpolar amino acid is less likely to disrupt protein structure than a small nonpolar replacing a large charged one. See

below.

The "Twilight Zone" and "Midnight Zone": The confidence with which we can infer homology decreases as sequence similarity
drops.
For sequences , an identity of 30% or higher is generally considered to be in the "safe zone,"
providing .
Burkhard Rost found that 90% of sequence pairs with identity at or greater than 30% over their whole length were

Identities between 20% and 30% fall into the "twilight zone," where it becomes challenging to differentiate true, distant
homologs from sequences that appear .

Below 20% identity is the "midnight zone," where homologous relationships cannot be reliably determined from sequence
similarity alone. These zones highlight the statistical nature of inferring evolutionary relationships from sequence data.

Insertions and Deletions (Indels): Biological sequences are dynamic; over evolutionary time, they acquire insertions and
deletions (indels) of genetic material. To create an alignment that reflects the most accurate evolutionary scenario and maximizes
observable similarity, gaps are strategically introduced into one or both sequences. These gaps represent the
in one lineage relative to another. For example, in the alignment A T - G T T A T A versus A T
CGT - C - C ,thehyphens denote indels.

I S I S E

U N
|
U E N

A - S E Q
| |
A T S E Q

0O—0

T H
| |
T H

3. Alignment Strategies: Global vs. Local Search

The choice of alignment strategy is critical and depends on the presumed relationship between the two sequences being compared.

Global Alignment:
Assumption: This strategy is applied when it is assumed that the two sequences are generally similar along their entire
lengths,

Process: The algorithm attempts to find the best possible alignment that spans the of both sequences, from their
very first residue to their very last. In terms of dynamic programming, the alignment path must extend from one corner of the

scoring matrix (usually top-left) to the opposite corner (bottom-right).
Application: Global alignment is most suitable for closely related sequences of approximately the same length, such as

Limitation: Its main drawback is that it can fail to identify highly similar regions if the sequences are otherwise largely
divergent or of significantly different lengths. By forcing an alignment across dissimilar regions, it may obscure important,
limited similarities.

Example Program: The Needleman-Wunsch algorithm is the classical dynamic programming approach for global alignment.

A web-based program called GAP (Global Alignment Program) performs global pairwise alignment and often avoids penalizing

terminal gaps, which can be useful when comparing sequences that truly differ in length but are homologous. Biopython's
PairwiseAligner can perform global alignments by setting mode = "global" .

seql EARDF-NQYYSSIKRSGSIQ

seq2 LPKLFIDQYYSSIKRTMG-H

global sequence alignment

seql NQYYSSIKRS

seg2 DQYYSSIKRT

local sequence alignment

Local Alignment:

Assumption: This strategy is used but are expected to share highly conserved
local regions, such as functional domains, motifs, or short gene fragments.
Process: The algorithm focuses exclusively on finding and aligning only the segments with the highest levels of similarity,
effectively . In a dynamic programming matrix,
, focusing on local maxima.

Application: Local alignment is more appropriate for divergent biological sequences, sequences containing multiple
domains of different origins, or sequences of disparate lengths. It is invaluable for or

within sequences.
Example Programs: The Smith-Waterman algorithm is the classical dynamic programming approach for local alignment.
Biopython's PairwiseAligner can perform local alignments by setting mode = "local" .

4. Algorithms for Pairwise Sequence Alignment

Three primary algorithmic approaches are used for PSA, each with unique strengths and computational characteristics:

Dot Matrix Method:

Description: This is a visual and intuitive technique that constructs a two-dimensional matrix. One sequence is placed along
the horizontal axis, and the other along the vertical. A dot is placed at every intersection

. Does not use gaps.
Interpretation: Regions of similarity appear as contiguous diagonal lines of dots. Direct repeats within a single sequence
appear as diagonals away from the main diagonal, while can appear as diagonals in
a dot plot of a sequence against its reverse complement.
Advantages: Excellent for rapid visual identification of similar regions, repeats, and features like self-complementarity, which
might indicate secondary structures.
Limitations: It typically requires to construct a full alignment with gaps, lacks statistical rigor, and is not
easily scalable for multiple sequence alignment.

Example Program: Dothelix is a web server that performs dot matrix alignments.

THISSEQUENCE
]
L]
L
°

moZmcomwX>unkHWwHI-H
L]

G|e

T e e @ @ @ [
T oo) @ @ ®
C] [] []

T o0 & @ @ []
A ® ° e ®
T e e @ E @ ®
T o e @ @] ®
C] L] [

T o0 & k) & []
A @ @ [W} []
A [] L) [) k3
c © o []

The dots in red, which form diagonal lines, represent runs of matched residues.

Dynamic Programming (DP) Method:

Core Principle: This is a rigorous quantitative method that guarantees finding optimal alignment(s) by systematically
between two sequences. It achieves this by breaking the large problem into
smaller, overlapping subproblems, solving each once, and storing the intermediate solutions in a scoring matrix. The goal is to

" between sequences.
Word Method:

This is a heuristic approach developed primarily for accelerating database similarity searches. This method is a key
component of popular database search tools like FASTA and BLAST, discussed in the next chapter.

5. Dynamic Programming Method

The dynamic programming (DP) algorithm is the core technique used to find the optimal alignment between two biological sequences
by maximizing their . This rigorous method efficiently explores all possible alignments, guaranteeing the identification of
the optimal alignment for a given scoring scheme.

If A is an alignment between two sequences oy, o5 then at any index ¢ it matches a base or a gap A;(7) in the first sequence with a

base or a gap A;(¢) in the second sequence. (Two gaps are not allowed to be matches in PSA.) The of this alignment is defined
as

5(4) = Z Score(Ay(i), As(i))

where Score(z, y) is given by:

A if one of the z,y is a gap.
Otherwise it is given by a match score for nucleotides, and an entry in a for proteins.

These terms are defined further below.

The dynamic programming approach frames sequence alignment as an instance of the Longest Path in a Directed Acyclic Graph
(DAG) Problem.

NN N N N b N

.A T C G T C C A T C G T C C

A \ AI

{ [
T

\.ﬁ Ti
G \ G

'\ .

T " T \

! ¢ : ._>.\.—).—>.
A \ \ A !

Image Credit: Compeau, Pevtzner, Bioinformatics Algorithms

5.1. Modeling Sequence Alignment as a Graph Problem

The alignment process begins by constructing an alignment graph (grid) for the two sequences being compared, v and w.

Nodes: The graph is an (Jv| + 1) x (Jw| 4+ 1) rectangular grid where nodes (3, j) represent the alignment state up to the i-prefix of
sequence v and the j-prefix of sequence w.

Edges (Alignment Steps): Paths within this grid represent possible alignments, with edges corresponding to three types of
alignment operations:

Diagonal Edges: Connect (i — 1, j — 1) to (4, j) and represent aligning residue v; with w;, which is either a match or a
mismatch.

Horizontal Edges: Connect (4, j — 1) to (%, j) and represent an insertion (a gap in v).

Vertical Edges: Connect (i — 1, j) to (%, j) and represent a deletion (a gap in w).

Weights and Scoring:

. The objective of the DP algorithm is to find the path from the source node (0, 0) to the sink node (|v|, |wl|) that yields the
maximum

5.2. The Dynamic Programming Recurrence

The DP algorithm computes the optimal alignment score iteratively by storing the optimal scores of subsequences in a matrix S. Let S ;
denote the score of the from the source (0, 0) to node (3, j).

The score S; ; for any node (3, j) is determined by the score of its predecessor nodes (i — 1, 5), (¢,j —1),and (i — 1,5 — 1).

The fundamental recurrence relation for computing S; ; in a generalized sequence alignment (like the Global Alignment Problem) with
linear gap penalties is defined as the maximum of the scores resulting from the three possible incoming paths:

Si_1,; + Score(v;, —) (Deletion, using the vertical edge)
S;,;j = max ¢ S; ;1 + Score(—, w;) (Insertion, using the horizontal edge)
Si—1,j—1 + Score(v;,w;) (Match/Mismatch, using the diagonal edge)
Here — represents a gap and the Score() are the , discussed below.

The calculation proceeds from the starting point (So,0) outward or upward, solving the smaller problems once and storing the result to
compute larger problems.

5.3. Backtracking and Alignment Reconstruction

Once the scoring matrix S (or matrices, in the case of affine gaps) is filled, the final alignment path is constructed via backtracking (or
traceback).

To enable reconstruction, the algorithm typically stores backtracking pointers (e.g., in a matrix Backtrack) at each node (i, 7)
indicating . The pointers usually take one of three values

The traceback procedure starts at the final node (the sink S, |, for global alignment, or the highest-scoring cell for local alignment)
and follows the pointers back to the source (0, 0). This reverse path determines the residues that constitute the optimal alignment.

5.4. Variations for Global and Local Alignments

The general DP approach is modified slightly to solve specific alignment tasks:

Global Alignment (Needleman-Wunsch)

The Needleman-Wunsch algorithm finds the optimal alignment over the entire length of the two sequences.

Initialization: The scores S; (for the first row) and S ; (for the first column) are initialized according to the accumulated gap
penalties, as alignment at these positions requires aligning prefixes against only gaps.
Traceback: The optimal path is guaranteed to span the entire matrix, starting at the source (0,0) and ending at the sink Sj,,|-

Local Alignment (Smith-Waterman)

The Smith-Waterman algorithm is designed to identify the (local alignments) within two longer

sequences.

Initialization and Score Restriction: The computation of the DP matrix for local alignment is similar to the one for global
alignment with the difference that in local alignment the score of any matrix entry that is negative, is set to zero. This is because a
negative entry means that the alignment before that entry has not been well and setting it to zero allows it to be a . In other
words, in local alignment we have:

0
Si_1,; + Score(v;, —)
Sij — max
’ Si j—1+ Score(—, w;)
51;17];1 + Score(vi, w]-)
Traceback: Backtracking begins at the single (This

element represents the best-scoring end point of the optimal local alignment segment.) It continues backward until an element with
a score of zero (a local "start") is reached.

5.6. Computational Efficiency

The runtime of the dynamic programming algorithm for aligning two strings of lengths n and m is proportional to the number of edges
in the alignment graph, resulting in a complexity of O(n - m). The memory required to store the backtracking pointers for
reconstruction is also O(n - m).

Techniques exist to reduce

this requirement:

Linear Space Alignment: If the goal is only to compute the alignment score (), the memory requirement can be
reduced to O(n) because only the previous column's scores are needed to compute the current column's scores.
Divide-and-Conquer: To recover the actual alignment in linear space (O(n) memory), a divide-and-conquer strategy is used (e.g.,
the Middle Node/Middle Edge Problem). This involves finding a node (or edge) on the optimal path that crosses the middle column
of the matrix, recursively dividing the problem into two smaller alignment problems. While achieving linear space, this technique
requires calculating scores in the forward and reverse directions, resulting in a runtime that is still O(n - m).

6. Scoring the Mutations and Gaps

The DP algorithm discussed above, depends on the Score(—,v), Score(u, —), as well as the match or mismatch scores
Score(u,v). The gap penalties are discussed in the next subsection. For mutations, the scores are derived from statistical analysis of
residue substitution data from sets of reliable alignments of highly related sequences.

For nucleotides, the score Score(u,v) is decided simply based on whether we have a match u = v (a positive score) or a mismatch

u # v (a negative score). This is assuming that the frequency of mutations is the same for all pairs of nucleotides.

For proteins however, changing one amino acid to another may not change the properties of the protein much, as some amino acids
are similar to each other in terms of structure and chemical properties. Thus for proteins we need that encode the
scores for the substitution of one amino acid with another.

Substitution Matrices (for amino acids):

Description: These are tables that assign numerical scores to every possible pair of aligned residues, reflecting the
likelihood of one residue being substituted by another over evolutionary time. They are derived from statistical analyses of
observed substitutions in . Scores are often expressed as log-odds ratios,
which are

A

(suggesting evolutionary conservation), so they represent substitutions of very
similar or identical residues. A zero score means that the frequency of amino acid substitutions found in the homologous
sequence data set is equal to that expected by chance.

PAM (Point Accepted Mutation) Matrices:

- Historical Context: The earliest and most influential substitution matrices were developed by Margaret Dayhoff and her
colleagues in the 1960s and 1970s.

- Derivation: The PAM1 matrix is based on observed , specifically those with only 1%
amino acid divergence. The element M (a, b) in the Mutation Probability Matrix gives the probability (or frequency) that residue
type b will be replaced by (or mutated to) residue type a, among sequences with only 1% amino acid divergence. This matrix M is
not symmetrical. Note that 1% amino acid divergence is regarded here as an

- Extrapolation: Other PAM matrices (e.g., PAM250, PAM80) are extrapolated from PAM1 using an evolutionary model.

, representing greater
evolutionary distance. Matrices for higher evolutionary distances (called PAM n) are obtained by multiplying the M matrix by
itself n times (M"). For example, PAM2 represents 2 mutations per 100 residues and is derived by raising the 1-PAM matrix to the
250th power.

ORIGINAL AMINO ACID

A N D C Q E G H 1 L K M F P S T W Y v

Alz| Arg| Asn| Asp| Cysl Gin] Glu} Gly| His] Tle| Leu] Lys| Met] Phe} Prg| Ser| Thr] Trp} Tyri val

A Ala|o867 2 9t 10 3 gl 17] 21 2 6 4 2 € 2] 2z 3% lg 0 2] 18

R Arg 1]9913 1 0 1} 10 0 cf 10 3 14 19 4 1 4 6 1 8! 0 1

N Asn 4 119822 36 0 4 6 6 21 3 1] 13 0 1 2] 20 9 1 4 1

b Asp 6 4] 4219859 0 6| 53 6 4 1 0 3 0 0 1 5 3 0 0 1

C Cys 1 1 0 0[9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2

g Gin 3 9 4 5 0|%876] 27 1] 23 1 2 6 4 0 6 2 2 a 1] 1

£ glul 10] 7} 56 Q 5(9865 4 2 3 1] 1 0 3 4 Z 0 1 2

S |6 Bly| 21 o121 1 1 3 719935 1 Q 1 2 1 1 3] 21 3 0 0 5
E H His 1 gl 184 3 1 20 1 0lg%12{ 0 1 1 ol 21 3 1 1 1 4 1
% I Ile 2 2 3 1 2 1 2 0 09872 9 2l 12 7 o] 1 7 o] 1t 33
% L Leu 3 1 3 0 0 6 1 1 41 2219947 2| 45 13 3 1 3 4 zl 15
E K Lys 21 37, 25 6 0 12 7 ? 2 4 119926| 20 0 3 8| 11 1} 1 1
g M Met 1 1 0 0 4] 2 0 0 0 5 8 419874 1 i} 1 2 0] 0 4
F Phe 1 1 1 0 0 0 0 1 2 8 6 0 4/9946 0 2 1 3| 28 0

P Pro| 13 5 2 1 1 8 3 2] 1 2 2 1 119926% 12 4 0 0 2

S Ser| 28! 11 34 7| 11| 4| 8| 16 2y 2 1 7 4 3| 17{9840| 38| &S 21 2

T Thr| 22 2l 13 4 1 3 2 2 1 11 2 8 6 1 5| 32(9871 0 2 l

W Trp} O 2 0 i} 0 0 0 0 0 0 0 0 0 1 0 1 0[9976 1 0

Y Tyr 1 o 3 0 3 o 1 0 4 1 1 0 of 21 0 1 1 2(9945 1

Vo val] 13 2 1 1 3 2 2 3 3] 571 11 1 17 1 3 2] 1o 0 2|9901

Figure 82. Mutation probability matrix for the evolutionary
distance of 1 PAM. An element of this matrix, M;;, gives the prob-
abitity that the amino acid in column j will be replaced by the
amino acid in row | after a given evolutionary interval, in this case

PAM1 matrix from the original paper

- Scoring Matrix Calculation: The final PAM scoring matrix is derived using the log-odds ratio. The entry PAM,,(4, j) is calculated
using the formula where Here f(3) is the background probability of amino acid j in the database. The logarithmic transformation is

often taken to the base 10.

1 accepted point mutation per 100 amino acids. Thus, there is a
0.56% probability that Asp will be replaced by Giu. To simplify
the appearance, the elements are shown multiplied by 10,000,

<M"(i,j)

log [—— 22

f(9)

G2

S 0 2

T -2 1 3

P -3 1 0 6

A -2 1 1 1 2

G -3 1 0 -1 1 5

N| 4|1 0 -1 0 0 2

D|-5]|0 0 -1 0 1 2 4

E| 5|0 0o -1 0 0 1 3 4

Q|51 -1 0 0 -1 1 2 2 4

H 31 -1 0 -1 -2 2 1 1 3 6

R 410 -1 0 -2 -3 0 -1 -1 1 2 6

K 510 0 -1 -1 -2 1 0 0 4 0 3 5

M|-5|2 1 -2 1 32 3 -2 4 -2 0 0 8

1 211 0 2 1 -3 | -2 -2 2 2|2 2 -2 2 5

L|6|3 -2 -3 -2 4|3 4 -3 2|2 -3 -2 4 2 6

ez |on oo e oz 2w 2le e wllzeg 2 4

F|4|3 3 5 4 5|4 8 5 5|2 4 5|0 1 2 1|8

y(o|s 3 5 3 5|2 4 4 4|0 -4 4|2 4 a4 2[7 10

w|ls|l2 &5 8 8 2|4 72 7 6|8 2 S|4 5 2 8]0 0 47
c|ls T P A G|N D E Q|H R K|M 1 L VI[F Y W

The PAM250 matrix. The numbers are rounded to the nearest integer.

Application: Higher PAM numbers (e.g., PAM250) are chosen for aligning more divergent sequences, while lower PAM numbers
(e.g., PAM1) are for closely related sequences. They are often used for reconstructing phylogenetic trees due to their explicit

)

evolutionary model.
BLOSUM (Blocks Substitution Matrix) Matrices:

Derivation: Developed by Henikoff and Henikoff , these matrices are based on the direct observation of amino acid
These "blocks" are highly conserved
regions, typically less than 60 residues, where sequence alignments are highly reliable.

Sequences within these blocks are clustered based on a percentage identity threshold e.g., a BLOSUM62 matrix is
derived from . Substitutions are calculated these clusters,
rather than within them, to reduce bias from highly similar sequences.

Application: Conversely to PAM, lower BLOSUM numbers (e.g., BLOSUM45) are used for more divergent sequences,
and higher numbers (e.g., BLOSUMS9O0) for closely related sequences.

Comparison of PAM and BLOSUM: A key difference is that most PAM matrices are derived by from an
evolutionary model, whereas BLOSUM matrices are based on from conserved blocks. This makes
and BLOSUM better for in local alignments and

database searches. High PAM numbers (e.g., PAM250) for divergent sequences, but low BLOSUM numbers (e.g., BLOSUM45)

for divergent sequences.

Biopython Implementation: Biopython's PairwiseAligner allows users to specify custom match_score and
mismatch_score (e.g., +5 for match, -4 for mismatch) or to load pre-defined substitution matrices like BLOSUM62 using
Bio.Align.substitution_matrices.load("BLOSUM62") . It also supports "generalized alignments" for comparing lists of

arbitrary objects, such as three-nucleotide codons.

Gap Penalties:
Biological Justification: Gaps are introduced in alignments to account for evolutionary events. Penalizing gaps ensures
that . This reflects that a
single indel event is often more probable than multiple independent indel events.
Types of Penalties:

Constant Gap Penalty: Assigns the same penalty score regardless of the gap's length. This is less biologically realistic.
Linear Gap Penalty: The penalty is directly proportional to the length of the gap.

Affine Gap Penalty: This is generally the most realistic model. It differentiates between a gap opening penalty (GOP) (a
larger penalty for a new gap) and a gap extension penalty (GEP) (a smaller penalty for an existing gap).
The total penalty for a gap of length 1 is often calculated as

open_gap_score + (n-1) * extend_gap_score .

Terminal Gaps: Gaps occurring at the very beginning or end of an alignment are often treated with , especially when
aligning sequences of different lengths. This is because they may not represent true evolutionary indel events but

. Biopython's PairwiseAligner offers granular control over these, allowing distinct
penalties for internal, left, and right gaps (e.g., target_internal_open_gap_score , query_left_extend_gap_score).

6. Statistical Significance of Sequence Alignment: Beyond Chance

After an alignment score is obtained, it is crucial to determine if that score is statistically significant — meaning, is it genuinely
indicative of homology, or could it have arisen merely by random chance? This is not always straightforward, as
, especially in long sequences or large databases. Note: even two randomly generated sequences may align at some bases.

Score Distribution: The typically follows the Gumbel
extreme value distribution. (An is the distribution of the maximum or minimum values of a quantity.)

0.4

0.3F

0.2

0.1F

0 A 3 G i
-5 -4 -3 -2 -1 0 1 2

The Gumble distribution. The x-axis units are standard deviations.

Cumulative Distribution Function (CDF) of Gumbel: The probability P(S < z) of the alignment score S being less than a value z,
according to Gumbel Distribution, is given by

P(S < z) = exp (—kmn - e)

where m, n are sequence lengths and A, k are constants which have to be fitted. (They depend on substitution matrix and gap
penalties used.) To estimate these constants, the distribution of the alignment scores of random shuffles of the sequences is
considered.

P-value: The P-value indicates the
A low P-value (e.g., < 0.05) suggests that the alignment is statistically significant.

More likely observation

\

1

>

P-value

Very un-likely
observations

Very un-likely
observations

Observed
data point\

Set of possible results

Probability density

1

The probability of obtaining an alignment of score S greater than or equal to z is approximately

P(S > z)=1—-exp (—Kmne) ~ Kmne

If a P-value is smaller than 10e-100, it indicates an exact match between the two sequences.

If the P-value is in the range of 10e-50 to 10e—100, it is considered to be a nearly identical match.
A P-value in the range of 10e-5 to 10e-50 is interpreted as sequences having clear homology.

A P-value in the range of 10e—1 to 10e-5 indicates possible distant homologs.

If P is larger than 10e-1, the two sequence may be randomly related.

Sometimes truly related protein sequences may lack the statistical significance at the sequence level owing to fast divergence rates.
Their evolutionary relationships can nonetheless be revealed at the three-dimensional structural level.

7. Computational Challenges and Practical Considerations

While dynamic programming algorithms guarantee optimal alignments, their computational demands (time and memory) can become
prohibitive for very long sequences (e.g., entire genomes) or when comparing a query against a large database. This has led to the
development of heuristic and approximation methods.

Computational Efficiency - The Need for Speed:
Memory Optimization: For , storing the entire dynamic programming matrix is impractical. Algorithms
can be optimized to store only a few rows (e.g., two) of the matrix at a time, drastically reducing memory usage, though this
usually makes the traceback procedure more complex and slower. This "algorithmic trick" is crucial for aligning complete
bacterial genomes with limited resources.
Reduced Matrix Calculation: Techniques like banded alignment limit computations to a narrow band around the main
diagonal of the scoring matrix,
Rigorous vs. Heuristic: While heuristic methods (like BLAST and FASTA) are fast, they do not guarantee optimal alignments.

DNA vs. Protein Alignment — The Power of Proteins:
It is generally more sensitive and informative to align sequences at the protein level rather than the DNA level for inferring
homology and conducting functional or evolutionary analyses.
Alphabet Size and Information Content: The 20-amino-acid alphabet of proteins provides more information per position than
the 4-base alphabet of DNA, and true biological signals more discernible. A match between
two DNA sequences has a higher chance of occurring randomly (up to 50% identity for unrelated sequences with gaps)
compared to protein sequences (only ~10%).
Conservative Substitutions: Protein substitution matrices (PAM, BLOSUM) are specifically designed to account for
conservative amino acid changes,

Frameshifts: Direct DNA alignment of protein-coding regions can introduce biologically unrealistic "frameshift" errors

. (e.g. AU-GACC and AGCUUA) The recommended approach is often to
translate DNA sequences into their corresponding protein sequences, perform the alignment at the protein level, and
then, if necessary, reverse-translate the alignment back to DNA to preserve codon consistency.

Parameter Choice — Customizing the Search: The outcome of any alignment is

, and word size (for heuristic methods). It is advisable to

, to find the set that yields the

most biologically meaningful alignment.
Low-Complexity Regions (LCRs) — Avoiding Spurious Hits: These are sequence segments with a highly biased composition
(e.9., like "RRRRRR"). LCRs can cause spurious, high-scoring alignments
between sequences, thus obscuring true biological relationships. Programs often mask these regions (replacing them
with 'X's for proteins or 'N's for DNA) to prevent misleading matches and improve the sensitivity of searches for genuine homologs.

8. Biopython for Pairwise Alignment: A Practical Toolkit

The Biopython library offers powerful and flexible tools for pairwise alignment.

The Bio.Align.PairwiseAligner Class: This class is the primary tool for pairwise alignment in Biopython (superseding the
deprecated Bio.pairwise2 module).
Algorithm Selection: It implements global (Needleman-Wunsch), local (Smith-Waterman), and other algorithms like Gotoh
(three-state) and Waterman-Smith-Beyer.
Parameter Control: Users have fine-grained control over alignment parameters :
match_score and mismatch_score can be set directly.
Pre-defined substitution matrices like BLOSUM®62 can be easily loaded using substitution_matrices.load("BLOSUM62") .
Affine gap penalties are fully customizable, with distinct open_gap_score and extend_gap_score for the query and target
sequences, and separate penalties for internal, left, and right terminal gaps (e.g., target_internal_open_gap_score ,
query_left_extend_gap_score). Users can also define custom gap scoring functions.

Alignment Output:
aligner.score(target, query) returns the best alignment score.
aligner.align(target, query) returns an iterator of Alignment objects, allowing access to one or all optimal alignments
if multiple exist.
Alignment objects have properties like len(alignment) (always 2 for pairwise) and alignment.shape (length of
alignment and number of columns).

Alignments can be printed in a human-readable format.

Generalized Pairwise Alignments: PairwiseAligner supports aligning not just single-letter strings but also lists or tuples of
arbitrary objects. This is useful for advanced applications, such as aligning three-nucleotide codons directly. A specific
substitution matrix (e.g., SCHNEIDER) can be loaded for codon alignments, with an alphabet of three-letter codons.
Substitution Matrix Derivation: The alignment.substitutions property of an Alignment object can report substitution
frequencies between residues, which can then be used to calculate a custom substitution matrix. This is similar to how BLOSUM
matrices were originally derived.

Conclusion:

Pairwise sequence alignment stands as a critical and continually evolving tool in bioinformatics. From the pioneering efforts of Dayhoff
and Levenshtein to the advanced algorithms and software like Biopython's PairwiseAligner , this technique allows biologists to
unravel the evolutionary stories encoded within biological sequences. By understanding its evolutionary underpinnings, algorithmic
nuances, scoring complexities, and statistical interpretations, researchers can extract profound biological insights into sequence
function, structure, and ancestry. The careful application of PSA, alongside other bioinformatics methods, continues to drive
discoveries in genomics, proteomics, and our understanding of life itself.

Exercises

Design a Python data structure (class) for storing an alignment of two sequences of the same type.

Consider the following alignment of two protein sequences. Compute its alignment score by hand using the PAM250 substitution
matrix, if the penalty of a gap is -5.

SNIYG

G-QA-

Add a member function to your alignment class from exercise one that computes the score of an alignment, using affine gap
penalty. If should give the choice of two substitution matrices PAM250 and BLOSUM®62 for protein sequences and allow the user to
set the two parameters for affine gap penalty.

Write a python function that takes two sequences and produces all their possible alignments.

Align the two sequences ATTC and TTG using the DP method. Set the scores for match, mismatch and a gap to be 1, -1,
-0.5 respectively. Perform both local and global alignment.

Implement the DP algorithm for PSA.

Imagine the probability distribution for a quantity @ is given by the density function 2e~2% for Q@ > 0. What is the p-value for
observing a sample with @ = 4 totally by chance?

