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Support Vector Machine (SVM)

The idea behind SVM, for binary classification is to find a hyperplane
that provides the largest margin between the two classes.

Figure: SVM for two classes in the Iris dataset.

The points in either class that are closest to this hyperplane are called
support vectors.
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The math of SVM

We represent the hyperplane we are looking for by

〈x, a〉+ a0 = xta + a0 = 0. (1)

The two classes are represented by y = +1 and y = −1.
We declare that an instance x belongs to the class −1 or 1 depending
on whether it lies on the “positive” or “negative” side of this
hyperplane; which is determined by the sign of y = 〈x, a〉+ a0.
To have a margin between either class and the hyperplane, we require
that for each datapoint (xi , yi ),

yi (〈xi , a〉+ a0) = |〈xi , a〉+ a0| ≥ 1 (2)

For support vectors, this inequality is an equality.
The distance between a point x and this hyperplane is given by
|〈x,a〉+a0|
||a|| .

Therefore the minimum distance from the points in either class to the
hyperplane equals ||a||−1.
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Solving SVM optimization problem

We thus want to maximize ||a||−1 (or equivalently minimize ||a||2)
subject to the constraints of (2).

These constraints determine a subset of Rd which is bounded by the
n hyperplanes given in (2).

To solve this problem, remember the method of Lagrange
multipliers: the extreme points of F (x) subject to g(x) = 0 occur at
points where ∇F = λ∇g for some constant λ.

Equivalently we can consider L(x, λ) = f (x)− λg(x) and find the
extremal points of L. If we have multiple constraints
C = {x|g1(x) = g2(x) = · · · = gk(x) = 0} then at the extremal
points, ∇f is perpendicular to C i.e. ∇F lies in the span of {∇gi (x)}.
This is equivalent to ∇(x) =

∑
i λi∇gi (x).

Equivalently consider L(x,Λ) = f (x)−
∑

i λigi (x) and set ∇L = 0.
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Solving SVM optimization problem cont.

However for SVM we have inequality constrains of the form gi (a) ≤ 0.

We introduce slack variables si and set gi (a) + s2i = 0. This turns the
inequality constraints to equality constraints. We thus consider the
Lagrangian

L(a,Λ) =
1

2
||a||2 +

n∑
i=1

λi (gi (a) + s2i ) (3)

where gi (a) = 1− yi (a
txi + a0).

The λi are non-negative and thus the summands on RHS are positive
only if xi is inside the margin i.e. gi (a) < 0.

At the minimum (a0,Λ0) we have ∇L(a0,Λ0) = 0 and gi (a0) ≤ 0 for
each i . However we also have more important conditions known as
complementary slackness:

λigi (a0) = λi [1− yi (a
t
0xi + a0)] = 0 (4)

for every i .
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Solving SVM optimization problem cont.

Complementary slackness follows from the equivalence of primal and
dual problems for convex functions.

Intuitively, at a point a0 if for some k , gk(a0) < 0 and λk 6= 0 then
consider a1 such that gk(a1) > gk(a0) and thus we can find a point
at near a1 such that L(at ,Λ) > L(a0,Λ). This implies that a0 is not
an extremal point of L.

It follows that if λi 6= 0 then yi (a
t
0xi − a0) = 1 and thus si = 0.

Therefore, if we add or remove points to our dataset, the solution to
SVM is not changed, as long as these new points are farther from the
hyperplane than the support vectors and “on the correct side”.
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Soft Margin SVM

What we described so far is called hard-margin SVM.

In practice, the two classes may not be linearly separable. Or they
may be separable but have outliers.

Figure: Hard margin SVM line is plotted in red. Credit: Rishabh Misra

In soft-margin SVM, we remove the strict constrains of (2) and
instead add a penalty term for each violation of the margin.

The penalty is 0 if yi (a
txi + a0) ≥ 1 and equals 1− yi (a

txi + a0)
otherwise. In short, the penalty is given by max(0, 1− yi (a

txi − a0)).
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Soft Margin SVM cont.

The soft-margin loss function is given by

||a||2 + C · 1

n

n∑
i=1

max(0, 1− yi (a
txi + a0)) (5)

We can divide this loss function by C , which shows that soft-margin
SVM is actually a regularized form of SVM.

Figure: Hard-margin and soft-margin SVM

In Python, linear SVM is given by the class
sklearn.svm.LinearSVC
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Gradient Descent for SVM

The loss function for soft-margin SVM is convex.

It is differentiable except on the boundary of the margin.

One can use its subgradient at each point to be able to use the
method of Gradient Descent.

Exercise: find the subgradient vector for the loss function (8).

This method is available as
sklearn.linear model.SGDClassifier(loss=’hinge’)

One advantage of this method is the ability to use SGD which scales
well with the size of the training dataset.
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SVM for non-linearly separable classes

Often the two classes cannot be separated by a hyperplane.

In such cases we may hope that by adding more features, the two
classes will become linearly separable.

This is akin to applying a map Φ : Rd → RD which maps our data to
a higher-dimensional space.

This can be done e.g. by adding nonlinear combinations of features,
as new features. For example if our features are x , y , we can consider
x2, xy , y2 as new features, which maps our data from R2 to R3.

The SVM hyperplane in RD has the form:

〈Φ(a),Φ(x)〉+ a0 = 0 (6)

It is a linear hyperplane in RD but is a nonlinear hypersurface in Rd .
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Kernel functions in nonlinear SVM

To simplify the computations, we find a kernel function K (x, z) such
that

〈Φ(x),Φ(z)〉 = K (x, z) (7)

For example if K (x, z) = 〈x, z〉2 and Φ(x1, x2, . . . , xd) = (xixj)i ,j
consist of all the quadratic terms in the xi . Then we have
K (x, z) = 〈Φ(x),Φ(z))〉.
Another example of a kernel is the Radial Basis Function (RBF) kernel

K (x, z) = exp(−||x− z||2). (8)

To recap: we are looking for the widest-margin SVM hyperplane P in
RD for the transformed data {(Φ(xi ), yi )}. This is equivalent to
finding a hypersurface S in Rd of the form K (a, x) + a0 = 0.

Of course we have Φ(S) = P.
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Kernel functions in nonlinear SVM cont.

An example of using the SVM with RBF kernel.
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Pros and Cons of SVM

In general SVM optimization problem is solved using Sequential Minimal
Optimization method which reduces the problem into a sequence of
optimization problems involving only two Lagrange multipliers at each step.
See: John C. Platt, Sequential Minimal Optimization: A Fast Algorithm
for Training Support Vector Machines, 1998.
Pros of SVM:

SVM provides high classification accuracy.

Cons of SVM:

It’s not probabilistic.

It’s sensitive to noise in the data.

Does not scale well with the size of the dataset.

SVM is an instance-based method.
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Support Vector Regression (SVR)

In SVR, for a given dataset {(xi , yi )} we want to find a linear
function f such that most of the data lies with an ε-margin of f .

This means that if |f (xi )− yi | < ε, there is no penalty, and otherwise
the penalty is |f (xi )− yi | − ε. Here ε is a hyperparameter.

In SVR we want to find a linear f (x) that minimizes the sum of the
penalties.

In SVR the goal is to reduce the error to a certain range. For example
predicting house prices with at most $5000 error.

In hard-margin SVR we want to minimize ||a||2 subject to
|atxi + a0 − yi | < ε.

In the soft-margin SVR we want to minimize
1
2 ||a||

2 + K
∑

i max(|atxi + a0 − yi | − ε, 0)
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In the soft-margin SVR we want to minimize
1
2 ||a||

2 + K
∑

i max(|atxi + a0 − yi | − ε, 0)
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Support Vector Regression (SVR) cont.

Figure: SVR for two different values of ε. Credit: A. Geron

SVR can be used for nonlinear regression by replacing atx with a
kernel K (a, x)!
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Support Vector Regression (SVR) cont.

Figure: Kernel SVR for sinusoidal data (with added noise).

Giving no penalty for when error is less than ε prevents unnecessary
fluctuations of the predicted f .

In Python (soft-margin) SVR is provided by the class from

sklearn.svm.SVR
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Adapting a binary classifier for multi-class classification

Any binary classifier, such as SVM, can be adapted for multi-class
classification using one of the following methods.

Assume we have
classes {1, 2, . . . ,m}
One-vs-All or One-vs-Rest: for each class k we take a binary
classifier that tries to separate class k from the union of the classes
i 6= k . This way we get k different classifiers.

In this method, to a new instance, is assigned the class which has the
highest classification score or probability. ( In SVM, the confidence
score for an instance is proportional to the signed distance of that
sample to the hyperplane.

One-vs-One: for each pair of classes k , l we forget about the rest of
classes and take the classifer that separates class k from class l . We
produce m(m − 1)/2 classifiers.

In this method the class that wins against the highest number of
other classes, is assigned.
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Adapting a binary classifier for multi-class classification,
cont.

Figure: One-vs-All (left) and One-vs-One (right). Credit: Jatin Nanda,
Zhongliang Zhang, et al.
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Adapting a binary classifier for multi-class classification,
cont.

Scikit-Learn uses One-vs-All for most classification problems except
for SVM

because the latter does not scale well with the size of the
dataset.

Scikit’s svm.SVC class uses One-vs-One method for multi-class
classification, while svm.LinearSVC uses One-vs-All.
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SVM quiz

Consider the following dataset:

feature1 feature2 class
2 0 good
0 1 bad
1 1 good

Compute the equation of the hard-margin SVM hyperplane for this
dataset.
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Solution to the quiz

We represent the two features by x1, x2. We want to find the hyperplane
(a line in this case) of the form a1x1 + a2x2 + a0 = 0 which maximizes
a21 + a22, subject to the constraints of (2).
To simplify the solution note that we can assume that either a2 = 0 or
a2 = 1, since we can divide by a2 if it’s not zero. Thus we have two cases
a0 + a1x1 + x2 = 0 or a0 + a1x1 = 0. We solve the problem for each
situation separately and compare the results.
In the first case, we want to minimize 1 + a21 (equivalently |a1|) subject to
a0 + 2a1 + 0 ≥ 1,
a0 + 0 + 1 ≤ −1,
a0 + a1 + 1 ≥ 1.
The region in R2 satisfying the above condition is bounded by the three
lines given by when the above inequalities are qualities i.e
a0 + 2a1 = 1, a0 = −2, a0 + a1 = 0. Drawing these lines we realize that
the point subject to the above inequalities at which min |a1| is achieved is
(−2, 2). This gives min ||a||2 = 1 + 22 = 5, for the first case.
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Solution to the quiz

In the second case, ||a|| = a21.
The constraints in this case are:
a0 + 2a1 ≥ 1,
a0 + 0 ≤ −1,
a0 + a1 ≥ 1.
From the 2nd and 3rd inequalities we get 1 ≤ a0 + a1 ≤ a1 − 1 which
implies a1 ≥ 2. Thus the smallest value of a1 is 2, for which a0 = −1.
(This is achieved because (-1,2) satisfies the above inequalities. You can
also draw the region in this case.) At this point ||a||2 = 22 = 4. This is
smaller than the first case and thus the solution is given by −1 + 2x1 = 0.
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Problems

1 Let {(xi , yi )} be a dataset such that xi ∈ Rd and yi ∈ {−1, 1}. Set
P,N consist of xi for which yi is positive, and negative respectively
Suppose there is a linear function f (x) such that for each i we have
sign(f (xi )) = sign(yi ). Then show that there is an SVM hyperplane
for the dataset i.e. a hyperplane H ⊂ Rd such that
d(P,H) := minx∈H{d(x,H)} = miny∈N{d(y,H)} =: d(N,H) and
moreover for any other hypersurface H ′ either d(P,H ′) > d(P,H) or
d(N,H ′) > d(N,P).

2 With the same assumptions as above, let xk , xl be such that
ykyl = −1 and that d(xk , xl) ≤ d(xi , xj) for any xi ∈ P, xj ∈ N. Is it
true that xk , xl are support vectors for H?

3 Show that the loss function for soft-margin SVM is convex and then
find subgradients for it, at point where it is not differentiable.

4 What is the soft-margin penalty for a point that lies on the boundary
of the margin but on the wrong side?
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