
7-3- Preferential Attachment and the Barabasi-
Albert Model
Complex Network Analysis Course
Reza Rezazadegan
Shiraz University, Spring 2025
https://dreamintelligent.com/complex-network-analysis-2025/

Scale-Free Networks

The distribution of in-degree and out-degree for the Web. The structure of the Web network can
be obtained, or at least sampled, using a web crawler. Instead of the Poisson distribution of a
random network (dotted curve), the data fits the power-law distribution which, in the log-log plot,
takes the form of a line. Source: Barabasi, Network Science

If a network's degree distribution follows the the power-law distribution, p(k) ∼ k−γ, then we call
it a scale free network. The constant γ is called the exponent of the network. "Scale" here is in
the statistical sense and refers to the second moment (or equivalently standard deviation) of the
degree distribution, as we will see. Put differently, if we scale the independent variable, k → ck,
then p(k) scales accordingly. For the Web, as a directed network we have γin = 2.1, γout = 2.45.
For real scale-free networks we have 2 < γ < 3.
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In the power-law distribution, we have p(k) = Ck−γ where C, γ > 0 are constants. Since the
probabilities must add up to one, we have C = 1

∑k k
−γ .

Note that for for k = 0 this diverges, thus isolated nodes have to be taken into account
separately.

Scale-free networks can be approximately studied using the continuous power-law distribution
by assuming that degree can take any value. In this regime, p(k) = Ck−γ and it follows from
∫ ∞
kmin

p(k)dk = 1 that p(k) = (γ − 1) kk−1
min k

−γ.

Vilfred Pareto discovered in 19th century that the income distribution in Italy followed a power
law.
Zipf's law states that the frequency of a word in a corpus is about twice the frequency of the next
word. In other words, word frequency follows a power law, too.



The frequency of words as a function of their frequency rank, in two different English books.

Hubs in scale-free networks



Comparison of Poisson and power-law distributions, both with mean equal to 10.

For the Web with average degree of 4.1, the probability of the existence of a node with degree
100 is 10−30 in the Poisson distribution and 10−4 in the power-law distribution.
This means that hubs are much less likely in random networks, compared to scale-free
networks.

Estimating the degree of the largest hub

"Largest" here means that there is at most one node with degree higher than kmax, i.e.

∫
∞

kmax

p(k)dk = 1/N .

Exercise: show that if degree distribution is given by the exponential distribution p(k) = Ce−λk

(as an approximation for the Poisson distribution), then

kmax = kmin +
logN

λ
.

Exercise: Show that for a scale-free network:

kmax ∼ kminN
1/(γ−1).

Thus, the difference between kmin and kmax is much higher in a scale-free network.



Comparison of a random network (left) and a scale-free network (right). The top part is the
degree distribution. Source: Barabasi: Network Science

Moments of the degree distribution (optional)
Remember that the moments of a distribution P  are given by E[P n] for n ≥ 1. For n = 1, this
gives the mean of the distribution and we have σ2 = E[k2] − E[k]2 and thus, standard deviation
can be expressed in terms of the second moment.
For the Poisson distribution with mean equal to λ, the standard deviation equals √λ.
For the power-law distribution we have

E[kn] = ∫
kmax

kmin

knk−γdk = C
k
n−γ+1
max − k

n−γ+1
min

n − γ + 1
.

We have E[k] = C
k

2−γ
max−k

2−γ
min

2−γ
 if γ ≠ 2 and C(log kmax − log kmin) otherwise. It follows that if γ ≠ 2

then E[k] ∼ N
2−γ

γ−1 .

As N → ∞, kmax goes to infinity. This means that in this limit, all moments for n > γ − 1 diverge.
Since for real networks γ is between 2 and 3, this means that the second and higher moments
diverge. In other words, the scale (standard deviation) of the degree distribution is infinite, for a
large network. For the Poisson distribution we have σ = √E[k].



The mean and standard deviation of degree for some real networks. * indicates that data fits a
power law distribution while ** indicates fit for a finite second momentum. Source: Barabasi,
Network Science

The plot of the standard deviation of degree vs average degree for some real networks. Source:
Barabasi, Network Science

Universality of the scale-free property
It was shown by de Solla Price in 1965 that the number of citations scientific publications receive
follows a power-law distribution.



The scale-free property was first established for the Web in 1999. It was later shown to hold for
other networks such as yeast protein interaction network and email communication network.

However not all networks are scale-free, e.g. power grid and the regular graphs arising in
chemistry. If a system has a limit on the number of links a node can have, the network will not be
scale-free.

The structure of a power gird. Source: Wikimedia Commons

A few "crossover" disributions are used in network theory as well, such as the following:



In plotting the degree distribution of a real network, we use a log-log plot, and we must use
logarithmic binning instead of linear binning. This means that the size of the bins grows
exponentially with k, to make sure that each bin has a comparable number of nodes.

The role of the degree exponent and the small
world property
Remember that

E[kn] = C
k
n−γ+1
max − k

n−γ+1
min

n − γ + 1

if n ≠ γ − 1 and C(log(kmax) − log(kmin)) otherwise. This means that if n ≥ γ − 1, E[kn] is
divergent as N → ∞.

The anomalous case γ ≤ 2

It follows from kmax ∼ kminN
1/(γ−1) that if γ ≤ 2 then kmax grows as a polynomial of N  (linearly

when γ = 2). This means that if γ < 2, the degree of the largest hub grows faster than network
size. Thus, scale-free networks with γ < 2 do not exist, unless multiple edges between a pair of
nodes are allowed. In both cases E[k] goes to infinity as N → ∞.

When γ = 2, kmax grows linearly with N  which means the network has a single hub with the rest
of the nodes attached to it. In this case, average distance does not depend on N .

Ultra-small regime 2 < γ < 3

Several real networks demonstrate scale-free property with γ in this range. Remember that for a
random network E[d] was proportional to logN

logE[k] . For scale-free networks, the existence of hubs
makes the average distance to be even smaller. It was shown that E[d] ∼ log logN

log(γ−1) .
In this regime, as mentioned above, E[k] is finite but E[k2] → ∞ as N → ∞. This means that

Power-law with exponential cutoff:

P(k) = Ck−γe−λk

Log-normal distribution

P(k) =
1

√2πσ
e−(log(k)−μ)2/2σ



average degree is finite but its standard deviation goes to infinity with N .
We have kmax ∼ N 1/(γ−1), thus kmax/N ∼ N −α where 0 < α < 1. This means that the largest hub
is directly connected to a sizeable portion of the network.

Critical point γ = 3

In this case
E[d] ∼ logN

log logN

The case γ > 3

The first and second momentum are finite and E[d] ∼ logN . Hence, the network behaves similar
to a random network.

Other topics:
Goodness of fit for the degree distribution and the approximation of γ

The Barabas-Albert Method

B. Bollobás and O. Riordan. The Diameter of a Scale-Free Random Graph. Combinatorica,
24: 5-34, 2004.
R. Cohen and S. Havlin. Scale free networks are ultrasmall, Phys. Rev. Lett. 90, 058701,
2003.



In this section we move from network topology to the evolution of the complex system it
represents. We want to see how scale-free networks are formed.

The Barabasi-Albert model explains the evolution of networks using two concepts:

Barabasi and Albert showed that these two concepts can be used to generate scale-free
networks.

Growth: most real networks are growing constantly. New web pages are created, new email
and social media accounts are created and even new genes are formed. Also new patents
are granted and new research papers are published every day.
Preferential attachment: new nodes tend to link to nodes with a high degree. (This goes
against the Erdős–Rényi model, in which new links are formed completely randomly.)

“For everyone who has will be given more, and he will have an abundance. Whoever does
not have, even what he has will be taken from him.” Gospel of Mathew

The process starts with m0 random nodes, with L0 links spread randomly between them.
At each step a new node is added, with m ≤ m0 links connecting it to the other (randomly
chosen) nodes.
The probability of the new node connecting to the node i with degree ki equals

π(ki) =
ki

∑j kj
.

After t steps, the network has N = m0 + t nodes and L0 + tm links.



A simulation of the Barabasi-Albert process with m0 = m = 2. Source: Barabasi Network
Science

Exercise: using Python and Networkx, run a simulation of the Barabasi-Albert model with
m0 = 2,m = 2 for 10000 iterations. Inspect how close is the degree distribution of the resulting
network to a power-law.

Degree Dynamics
Note that at each time step, the degree of the node i is expected to increase by mπ(ki). Thus,
considering time to be continuous, we have

∂ki
∂t

= m
ki

∑j kj
= m

ki

2mt
=

ki

2t
.

Thus,

ki(t) = m(t/ti)
β

where β = 1/2 and ti is the time node i was introduced to the network.
For older nodes ti is smaller and therefore, their degree increases at a faster rate.

Note also that the growth in a node's degree is sublinear in time (∼ t1/2), whereas in the random
graph model, growth is linear in time (if new nodes are added at a constant rate). This is
because the probability of link formation between the new node and existing nodes is the same



for all the nodes. In the Barabasi-Albert model, newer nodes in the network face more
competition for new links compared to the older ones.

To derive the degree distribution of this network, note that when a new node is added, it can
affect the number N(k, t) = Npt(k) of nodes of degree k by either:

For the second case, the number of nodes of degree k that the new node can connect to equals:

πt(k) × m × N ⋅ pt(k) =
k

2tm
× m × tpt(k) =

k

2
pt(k).

The first equality is because N = t. In a similar way, the number degree k − 1 nodes that the
new node can connect to is k−1

2 pt(k − 1). Therefore, from the above argument we conclude that
the difference between the number of nodes of degree k, between time t and t + 1 is:

(N + 1)pt+1(k) − Npt(k) =
k − 1

2
pt(k − 1) −

k

2
pt(k).

Note that the minimum degree of the nodes is m, because each new node is connected to m
other nodes at birth. For k = m, the above equation has to be adjusted to

(N + 1)pt+1(m) = Npt(m) + 1 −
k

2
pt(m).

The 1 is for the new node. We are interested in the limiting stationary distribution
p(k) = limt→∞pt(k). In this limit, if we move the first term on the right hand side of the above
equations to left hand side, we get p(k) = k−1

k+2 p(k − 1) for k > m and pm = 2/(2 + m). Using
induction we can show that

p(k) =
2m(m + 1)

k(k + 1)(k + 2)
.

For large k we have p(k) ∼ k−3 and thus, this is approximately a scale-free distribution with γ = 3

.

Exercise: using the equation for ki(t) and assuming that time and degree distributions are
continuous, give an alternative derivation of the degree distribution. Hint: consider p(ki(t) < k).

Measuring preferential attachment in real networks

linking to a node of degree k − 1 and thus increasing N(k, t) by 1, or
linking to a node of degree k and consequently decreasing N(k, t) by 1.



We saw that the Barabasi-Albert method results in scale-free networks. Now we want to see
whether preferential attachment happens in real networks.
We want to test two hypotheses:

Imagine we have a network whose evolution we know over a time period. Actually it is sufficient
to know the network map at two different times. If i is a node whose degree ki is changed by the
amount Δki over this time period Δt then we expect

Δki

Δt
∼ π(ki).

Since the Δki
Δt

 curve is noisy, we consider the cumulative function

Π(k) = ∑
ki≤k

π(ki).

If there is no preferential attachment then π(ki) would be constant and thus Π(k) ∼ k. When P.A.
is present, we have Π(k) ∼ k2.

The probability of a new node connecting to an existing node is proportional to latter's
degree k, thus it can be denoted by π(k).
The probability π(k) depends linearly on k.



The plot of Π(k) vs k for a) citation network, b) internet, c) collaboration network, d) actor
network. Source: Barabasi, Network Science

From the figure we conclude that in real networks π(k) ∼ kα is sublinear in k.

Nonlinear preferential attachment (optional)
Inspired by the above discussion, we consider the B.A. model with π(k) ∼ kα. When α = 0 we
get the random graph model and when α = 1, we get the B.A. model.

Sublinear case 0 < α < 1

In this case we have

π(k) =
kα

μ(α, t)

where μ(α, t) = E[kα] = ∑k k
αp(k, t). We denote μ(α) = limt→∞ μ(α, t). We have μ(0) = 1 and

μ(1) = E[k] = 2L/N = 2mt/N ∼ 2m.
For k > m we have:



p(k, t + 1) =
m(k − 1)α

μ(α, t)
p(k − 1, t) −

mkα

μ(α, t)
p(k, t).

The first term on the right hand side is m times the probability that the degree of a randomly
chosen node is increased to k, when a new node is added. The second term is m times the
probability of such a node to stop being of degree k when a new node is added.
When k = m, since there are no nodes of degree m − 1, and the newly added node is of degree
m, we have

p(m, t + 1) = −
m

μ(α, t)
mαp(m, t) + 1/N

The last term indicates that the new node has degree m. Taking the limits when t → ∞ we get
pk = m

μ
((k − 1)αpk−1 − kαpk), and therefore, pk =

(k−1)α

μ/m+kα
pk−1.

Exercise: using induction show that

pk =
μ(α)kα

m

k

∏
j=m

(1 +
μ(α)

mjα
)−1

Exercise: by taking the logarithm of both sides of the above equation and approximating the
resulting sum by an integral, show that for 1/2 < α < 1 we have:

p(k) ∼ k−α exp(−
μ(α)

m(1 − α)
k1−α)

In this case degree distribution is a stretched exponential.
We see that sublinear P.A. limits the size and the number of the hubs. We also have

kmax ∼ (log t)1/(1−α).

This can be responsible for deviations from a pure power lows seen in real networks.

Superlinear case α > 1

In this case, P.A. is amplified and we have kmax ∼ t ∼ N . We don't have a stationary distribution
in this case.



The growth of the hubs. Source: Barabasi, Network Science.

The Origins of Preferential Attachment
There are two theories for the origin of preferential attachment.

Local or random mechanisms
The idea is that a new node chooses a link that is already in the network and tries to copy it,
instead of choosing a node to connect to. At each step we choose an existing link in the network
and connect the new node to one of the link's nodes.



In the Copying Model, for a new node v, a random target node u is chosen, then

Note that the second step is equivalent to choosing a random link from the network.

Copying model can be observed in real networks. For example:

The probability of the new node v connecting to a node of degree k is p × p(k) + (1 − p) k
2L .

Copying model. Source: Barabasi, Network Science

with probability p it links to u and
with probability 1 − p it links to one of the (randomly chosen) nodes that u links to.

A person with a lot of friends is likely to be introduced to new friends by his/her current
friends.
A researcher is likely to cite the publications that the papers he/she has read refer to.

Kumar, et al., The Web as a graph. Proceedings of the 19th Symposium on principles of
database systems, 2000.


