
7-2- Random Graphs
Complex Network Analysis Course
Reza Rezazadegan
Shiraz University, Spring 2025
https://dreamintelligent.com/complex-network-analysis-2025/

Introduction
We want network models that can accurately resemble the structure and evolution of real-world
networks.
As real networks seem somewhat random, why not consider networks whose edges are spread
randomly. For example in a gathering of strangers, people get to know each other nearly
randomly.

In the random graph model, the probability of link formation between any two nodes is a fixed
number p.
There are two models for random graphs, both introduced in 1959:

In the Erdős and Rényi model, the link probability (probability of link formation between two
randomly chosen nodes) is L

(N
2
)
. For convenience we denote (N2) by N  . Note that a random

graph model such as G(N ,L) should be thought of as an ensemble or probability distribution
over the set of all graphs with N  nodes and L edges.

In the G(N , p) model, the number of links is not fixed. Let's compute its expected value. The
probability p(L) of having L links is the product of three factors:

Erdős and Rényi, G(N ,L): the number of nodes N  and links L are fixed and the edges are
spread randomly.
Gilbert, G(N , p): the number of links is not fixed and we have the probability of link formation
between two nodes is p.

pL for the L links that exist,
(1 − p)N−L for the links that do not exist,
(N
L
) for the number of ways to spread L links between the nodes.
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Therefore p(L) follows a binomial distribution and

E[L] = pN .

We also have E[k] =
2E[L]
N

= p(N − 1) for the average degree.

Three realizations of a random graph with N = 12, p = 1/6. Image source: Barabasi, Network
Science

Degree distribution
As we see in the above figure, some nodes in a random network are more connected than
others, therefore we also compute the degree distribution of such a network. The probability p(k)

that a given node has degree k is the product of three terms:

Thus p(k) has a binomial degree as well. Most networks are sparse and therefore
E[k] = p(N − 1) << N , or in other words, p is very small. Thus, the second term above can be
approximated by e−E[k] and the third term by (N−1)k

k! . So, the binomial distribution can be
approximated by the Poisson distribution:

p(k) = e−E[k] E[k]k

k!
.

Poisson distribution: if the average number of customers visiting a shop in a day is λ, then
what is the probability of k customers visiting in a given day?

Note that in this approximation, degree distribution is independent of network size. For
example, the number of friends you have is independent of the number of people in the world!

pk for the nodes it links to,
(1 − p)N−1−k for the nodes it doesn't link to,
(N−1

k
) for the number of ways we can choose the linked nodes.



Degree distribution for networks with average degree of 50 and network sizes 100, 1000, 10000.
For N = 100 degree distribution varies greatly from the Poisson distribution because the
condition E[k] << N  is not satisfied.

Clustering coefficient
CC is the probability of two neighbors of a node to be neighbors themselves. In a random graph
probability of neighborhood is the same for all nodes and thus average CC equals the probability
p = E[k]/(N − 1).

Hubs are absent in random networks
Note that in the formula for the Poisson distribution, λk grows slower than k! and thus, the
probability of having large degree decreases fast. Using the Stirling approximation for k! one can
show that this probability decreases super-exponentially.

Stirling approximation:

n! ∼ √2πn(n/e)n.

Poisson distribution is highly concentrated around its mean.



Comparing the degree distribution of three real networks to the Poisson distribution.

The evolution of a random graph
In this section we are concerned with the evolution of a random graph when we increase p.
Extreme cases:

Let the giant component G be a component whose size is proportional to the size of the network.
In other words if NG is the size of this component then limN→∞ NG/N ≠ 0.
How does NG/N , the relative size of the giant component evolve as we increase p? Note that
we are concerned with the asymptotic behavior of the random graph when N → ∞.

Note that we have two parameters in a random graph: the probability p and the number of nodes
N . Increasing either one will increase the number of edges. (Note that if we add a new node to a
random graph of size N  then new edges are added from that node to the old nodes with the
probability pN .) In the analysis of random networks, we are interested in the behavior of the
network as p goes from 0 to 1 and as N → ∞.

We say that the random graph G(N , p) satisfies a condition (e.g. having a giant component of
nonzero size for p > 1/N) with high probability if the probability of satisfying this condition (i.e.
the fraction of the graphs of the form G(N , p) that satisfy this property) goes to 1 as N → ∞. In
the following, all the properties that we consider are evaluated this way.

p = 0: graph has N  connected components (isolated nodes).
p = 1: complete graph.



Erdős and Rényi showed that when we pass the threshold E[k] = 1 a giant component emerges.
This is equivalent to p = 1/(N − 1) ≃ 1/N .

Driving Erdős-Rényi criterion for the emergence of giant
component (optional)
Let NG be the size of the giant component. We want to compute S = NG/N . Let a = 1 − S, be
the fraction of the nodes not in GC. Every node in GC is connected to another node in CG.
To compute the probability a, note that if u is a node not in GC, and v is another node, then
either:

Thus, the probability that u is not connected to GC via v is (1 − a)(1 − p) + a = 1 − p + ap.
The probability that u is not connected to GC via any node: (1 − p + ap)N−1. Thus we have:

a = (1 − p + ap)N−1.

Since E[k] = p(N − 1),

a = (1 + E[k]
a − 1

N − 1
)N−1

→ eE[k](a−1).

This is because E[k] << N  and we are interested in the asymptotic behavior when N → ∞.
Thus

a ≃ e−E[k](1−a).

If S = NG/N = 1 − a then

S = 1 − e−SE[k].

Exercise: show that if E[k] < 1 and S > 0 then 1 − e−SE[k] < S. Thus S has to be zero.

It follows from the exercise that when E[k] < 1, S = 0 and thus we don't have a giant component
(i.e. the size of the giant component is zero).

Exercise: show that if E[k] > 1 then the equation for S has a nonzero solution and thus we have
a giant component. Hint: show that for different values of S, 1 − e−SE[k] − S can be both positive
and negative.

v is in GC and u is not connected to it, with probability: (1 − a)(1 − p)

v is not in GC, with probability: a.



Left: plot of y = 1 − eSE[k] and its intersection with y = S. Right the plot of S as a function of E[k].
Source: Barabasi, Network Science

Note that at the turning point, where the plot hits the y = S line, the derivative of 1 − e−SE[k] w.r.t.
S equals 1, which gives E[k]e−SE[k] = 1 or log(E[k]) + (−SE[k]) = 0 or S = log(E[k])/E[k]. Since
S is nonnegative, this means that the transition from S = 0 to S > 0 happens at E[k] = 1.

What this means is that if E[k] < 1, the fraction of the elements of the random graph which
belong to any given component goes to zero as N → ∞.

Exercise: show that the probability of the existence of two giant components decreases
exponentially as N → ∞. Hint: assume we have two giant components and compute the
probability that no edges exist between the two.

We call the components other than giant component as small components. If follows from the
above discussion that if s is the size of a small component then s/N → 0 as N → ∞.

Computing the sizes of small components (optional)
Regardless of the value of E[k], we show that small components are trees and compute the
distribution of their sizes. More precisely we show that "with high probability" (as defined above),
small components are trees.

If a component of size s is not a tree then it contains an edge between two nodes such that if we
remove this edge, the component stays connected. The probability of having such an edge is

[(s
2
) − (s − 1)]p.

The second term in the brackets is to exclude vertices that are already connected. The above
probability equals (s − 1)(s − 2)

E[k]
N−1 . Thus, if we show that limN→∞ s2/N → 0 then this

probability goes to zero.

Let πs be the probability that a randomly chosen vertex belongs to a small component of size s.
Note that ∑∞

s=1 πs = 1 − S where S is the size of the giant component.



The probability p(s|k), that such a vertex has degree k too, can be computed by realizing that the
removal of this vertex, decomposes the tree into a set of k trees whose sizes add up to s − 1.

We have:

p(s|k) =
∞

∑
s1=1

⋯
∞

∑
sk=1

k

∏
j=1

πsj ⋅ δ(s − 1,∑ sj)

where δ is the Dirac delta function. For example p(s|2) = ∑∞
s1=1 ∑

∞
s2=1 πs1

πs2
δ(s − 1, s1 + s2).

Of course: πs = ∑k p(s|k)p(k) and p(k) is the degree distribution given by Poisson distribution.
We consider the generating function h(z) = ∑s πsz

s.

Exercise: use the recursion formula above to show that h(z) = z exp(E[k](h(z) − 1)).

Note that h(1) = 1 − NG/N = 1 − S and E[s] =
∑s sπs

∑s πs
= h′(1)

1−S
.

Exercise: using the last exercise show that h′(1) = 1−S
1−E[k]+SE[k] .

Thus the average size of a small component to which a randomly chosen vertex belongs is
E[s] = 1

1−E[k]+SE[k] . Note that when E[k] < 1 then S = 0. As E[k] approaches 1, the average size
of components goes to infinity. It becomes finite again for E[k] > 1.

Note that if ns is the number of components of size s then πs = sns/N .
Exercise: show that E[n] = 2/(2 − E[k] − SE[k]).

Using the theory of complex variables, it can be shown that

πs =
(sE[k])s−1

s!
e−sE[k].

Using Stirling formula we get



πs ∼ s−3/2 es(1−E[k]) E[k]s−1.

Subcritical level E[k] < 1 or p < 1/N

The number of edges is nearly E[L] = pN(N − 1)/2 < N/2.
As we saw above, in this case we don't have a giant component and thus, the fraction of nodes
belonging to any component goes to 0, in the N → ∞ limit.

The connected components are trees. The size of the largest connected component is logN  and
thus the ratio NG/N  goes to zero for large N . (The size of the largest connected component can
be defined by ∑∞

s=smax
πs = smax/N .)

When average degree is less than 1, the last terms in πs dominate, and thus, the probability of
having a large component of size s decreases exponentially with s.

Critical level E[k] = 1

When E[k] = 1, in equation for πs we get p(s) ∼ s−3/2.
The size of the largest component is N 2/3. Most nodes are in various small components.

Supercritical level E[k] > 1

S =
NG

N
∼ E[k] − 1.

Connected level E[k] ≥ logN  or p ≥ logN/N

In this regime, as N → ∞, the size of the giant component goes to N . From the equations above
this means that pN   → ∞.

Exercise: show that in the formula for a = 1 − S, in terms of N , if E[k] = logN  or is larger, then if
the right hand side is convergent then it goes to zero, which means a = 0 or S = 1.

Network is still relatively sparse.

Real networks are supercritical



The size and average degree of a few real networks. Source: Barabasi, Network Science.

Even though these networks are supercritical (thus they have a giant component according the
random graph model), for most of them E[k] < logN  and thus according to random graph theory
they must not be connected, which is a contradiction.

Exercise: a) Using the Networkx library, simulate the behavior of a random network with 100
nodes as p goes from 0 to 1. Consider the values 1/1000, 1/500, 1/300, 1/200, 1/100, 1/90, 1/80,
1/50, 1/30, 1/20, 1/10 for p. For each value plot the network and plot the distribution of the sizes
of the components.
b) For random networks of sizes 100, 1000, 10000, for critical, a subcritical and a supercritical
value of p compute the fraction of the nodes belonging to the largest component.

Small world property
Let d denote shortest path distance in the network. Assuming d to be small, the number of nodes
at distance d of a node is proportional to E[k]d.
Thus the number N(d) of nodes within distance d of a given node can be approximated by

1 + E[k] + E[k]2 + ⋯ + E[k]d =
E[k]d+1 − 1

E[k] − 1
.

If E[k] >> 1, this number can be approximated by E[k]d.

If dmax is the diameter of the network, from N(dmax) = N  we get a rough approximation:

dmax ∝
logN

logE[k]
.

For most networks this equation provides a better approximation for average distance than dmax,
because the latter is dominated by some outlying nodes. Thus small world property can be
defined by



E[d] ∝
logN

logE[k]

Note that logN  is orders of magnitude smaller than N , thus average distence will be surprisingly
small.

For the global social network with N = 7 × 109 and E[k] being equal to the Dumbar number 150,
we get the approximation 4.5 for the average distance.

Average distance and diameter in some real networks and their approximation based on random
network theory. Source: Barabasi, Network Science.

Generating networks with a prescribed degree
distribution
Given a degree distribution p(k) we want to generate a network whose degree distribution
equals p(k) but is otherwise random.

Configuration model
In this model, the number of links L, as well as the number of nodes N  is fixed. We start with a
degree sequence i.e. numbers k1, k2, … , kN  which give the degrees of the nodes. We regard a
node of degree ki as having ki "stubs" attached to it. We then randomly attach the stubs to each
other.
Note that ∑i ki has to be even, and it equals 2L. Note also that this method can produce loops
and multiple edges.



The probability of having an edge between nodes of degrees ki, kj equals

kikj

2L − 1
.

Exercise: show that as N → ∞, the expected number of self-edges and multi-edges goes to
zero.

Hidden parameter model
This is another model for generating networks with a given degree distribution.
Given a distribution η, and the number N  of nodes, we draw N  random numbers η1, η2, … , ηN

from the distribution. These numbers represent the fitness of the nodes. Starting from N  isolated
nodes, we connect edges i, j with the probability

pi,j =
ηiηj

E[η]N
.



Exercise: a) What is p(ki = k)?
b) What is the degree distribution of the resulting network?

Degree preserving randomization
In this method we "rewire" network's links in such a way that the degree of each node is
preserved.

Question: is a certain network property predicted by its degree distribution alone, or does it
represent some additional property not contained in p(k)? If the property still holds after degree
preserving randomization, then it is determined by the degree distribution.

Algorithm: randomly choose two links (u, v), (w,x) in the network and swap them to (u,x), (w, v).
The degrees of the two nodes are preserved. Do this until all links in the network are permuted.


