
2-Review of Graph Theory
Complex Network Analysis Course
Reza Rezazadegan
Shiraz University, Department of Mathematics and Computer Science, Spring 2025
https://dreamintelligent.com/complex-network-analysis-2025/

Graphs
A graph G consists of a set V of vertices (or nodes) and a set E of edges or links. Each
edge is of the form {u, v} where u, v are two vertices of the graph. Such graphs are
undirected, meaning that the relations between nodes are symmetric.

We denote the number of nodes and links in a network by N and L respectively.

The degree k(v) of a node v is the number of edges connected to it. Nodes with
relatively high degree are called hubs of the network.

The average degree E[k] of a network equal 2L/N . (It is denoted by < k > in the
Network Science book.)

Most of the graphs we consider in this course are simple graphs meaning that there can
be at most one edge between any two nodes. However in general there are multigraphs
in which there can be more than one edge between two nodes.

Bipartite graphs
The nodes in a bipartite graph have two types, and there is no edge between the nodes
of the same type.

https://dreamintelligent.com/complex-network-analysis-2025/

For example the customer-product network for a recommender system is a bipartite
graph.

The adjacency matrix
After choosing an enumeration of the vertices V = {v1, v2, v3, … , vN }, the adjacency
matrix A of the graph is defined by:
Ai,j = 1 if there is an edge between vi, vj and zero otherwise.

We have k(vi) = ∑j Ai,j.

For large networks with thousands or millions of edges, the adjacency matrix will be
huge.

Real networks are sparse, meaning that the number of their links is proportional to N
and is much smaller than the possible number of links i.e. (N

2). The neural network of
the worm C. elegans, has 297 neurons as nodes and 2,345 synapses as edges.

The adjacency matrix can be stored as a sparse matrix, however for large networks it is
not efficient to use it computationally.

Directed Graphs
In directed networks, relations are asymmetric and thus edges are represented by
ordered tuples (u, v) and depicted by an arrow u → v.

Examples: citation networks, web,...

For directed graphs we have in-degree kin(v), i.e. the number of links coming into v, and
out-degree kout(v), i.e. the number of links going out of v. Similarly, we have Nin(v) i.e.
the set of nodes which link to v (called its predecessors) and Nout(v) i.e. the set of
nodes that v links to (called its successors).
Of course the sum of the two equals degree of the node: k(v) = kin(v) + kout(v).
We have E[kin] = E[kout].

The adjacency matrix of a directed graph is not symmetric:
Ai,j = 1 if there is an edge from vj towards vi.

Image credit: Barabasi, Network Science

Every directed graph has an underlying undirected graph which is obtained by
symmetrizing the relations.

Weighted Graphs
In the graphs considered so far, all links have the same "value" but in reality, in many
networks, the edges have weights wij which quantify their role as a link between nodes
vi, vj. For example:

We can encode link weights in the adjacency matrix: Ai,j = wi,j.

Adjacency lists
Adjacency lists are a way of encoding a graph in computer memory.

Adj(1)=[2,3]
Adj(2)=[1,3,4]
Adj(3)=[1,2]
Adj(4)=[2]

the total length of communication in a mobile communication network
the amount of traffic in a communication or transportation network
the number of clicks on a link between two webpages.

Note: changing the labeling (enumeration) of the nodes results in a different adjacency
list. However, the output of the graph algorithms must be independent of the labeling.

Paths and connectivity
A path in an undirected network consists of a sequence of nodes

v1, v2, … , vn

such that there is an edge vi − vi+1 between vi, vi+1 for each i < n. For directed
networks, there must be a directed edge from vi to vi+1. The length of a path is the
number of edges in it.

In a weighted graph the length of a path is defined to be the sum of the weights of the
edges in it.
Whether weighted or not the length of the path v1, v2, … , vn equals ∑i Avivi+1

.

A cycle is a path that starts from a node and goes back to it. A graph is called a tree if it
has no cycles.

The distance between two nodes is the minimum length of all the paths connecting
them. If there is no path connecting them, the distance is taken to be infinite. This way a
network is a metric space and a topological space.

The diameter of a network is the maximum distance between its nodes.

We can define an equivalence relation on graph nodes based on whether there is a path
connecting them. This relation partitions graph nodes into connected components. A
graph is connected if it has only one connected component, or in other words, if there is
a path between any pair of its nodes.

The adjacency matrix of a disconnected graph has block-diagonal form.

For directed graphs, distance is measured in the underlying undirected graph. However,
even if the underlying undirected graph is connected, there may not be directed paths
between pairs of nodes.

For weighted graphs, the length of a path is the sum of its weights. For example in the
case of estimating time of arrival (e.g. in Google Maps), routes with more traffic have a

higher weight and can be thought of as being longer.

Relation to adjacency matrix: Ai,j equals the number of paths of length 1 from vi to vj.
Likewise

(A2)i,j = ∑
k

Ai,kAk,j

is the number of paths of length 2 between those two vertices. This way, (Al)i,j is the
number of paths of length l from vi to vj. The entries of the matrix

B = A0 + A + A2 + A3 + ⋯

equal the number of all paths between pairs of nodes of the network. Note that the
above sum equals (I − A)−1 if all eigenvalues of A are < 1 and (I − A) is invertible.

Since even in a small graph, paths can be arbitrarily long, we can introduce an
attenuation factor 0 < β < 1 and consider

∞

∑
n=0

(βA)n

instead. This way, longer paths contribute less and the number of paths between u to v
can be thought of as a measure of neighborhood similarity of u and v. It is called the
Katz index K(u, v) of these two nodes. In a directed network, Katz index quantifies the
influence of u on v. The sum ∑v K(u, v) is a measure of centrality of the node u. More
on this in Chapter 5.

Even though the above computation is elegant, the adjacency matrix of a large network
will be huge. BFS is a better option.

Breath-First Search (BFS)
BFS and DFS are algorithms for sweeping all the nodes in a graph.

BFS is a recursive algorithm and uses a queue data structure. Starting from a node u of
the graph, BFS labels each node v by its distance l(v) to u. Let F(v) be the function
(routine) that puts all the unlabeled neighbors of the node v in the queue and labels
them with 1 + l(v) i.e. one plus the label of v.
BFS calls F(u) then recursively takes a node v out of the queue and calls F(v) until the
queue becomes empty.

Image source: Barabasi, Network Science

def BFS(G, source):

distances from source to nodes

dist = {v : Null for v in G}

Create a queue for BFS

queue = []

Mark the source node as

visited and enqueue it

queue.append(source)

dist[source] = 0

while queue:

Dequeue a vertex from the queue and print it

Depth-First Search (DFS)

Dijkstra algorithm
BFS algorithm, as is, does not find the shortest paths between nodes for us. Note that
shortest path finding can be generalized to weighted graphs.

Dijkstra algorithm is used for finding best paths in transportation and communication
networks e.g. in internet routing.

s = queue.pop(0)

print(s, end=" ")

Get all adjacent vertices of the dequeued vertex s.

If an adjacent has not been visited, its dist to source is

1+dist[s] and we enqueue it

for v in G.nbhs[s]:

if dist[v] == None:

queue.append(v)

dist[v] = dist[s]+1

def dijkstra(graph, source):

Initialize distances and visited set

distances = {vertex: float('inf') for vertex in graph}

distances[source] = 0

visited = set()

while len(visited) < len(graph):

current_node = min((node for node in graph if node not in

visited), key=distances.get)

visited.add(current_node)

for (neighbor, weight) in graph[current_node].nbhs():

new_distance = distances[current_node] + weight

if new_distance < distances[neighbor]:

distances[neighbor] = new_distance

return distances

Induced subgraph
Let G = (V , E) be a graph.
If V ′ ⊂ V is a subset of the nodes of the graph, then the subgraph induced by V ′ is the
graph which has V ′ as the vertex set, and its edges are the edges of G whose nodes
are in V ′. It is also called the restriction of G to V ′.

Directed Acyclic Graphs (DAGs) and
Topological Decomposition
A directed graph is called acyclic if it has no directed cycles. Citation networks are
typically directed acyclic grapgs (DAGs).

DAGs admit a filtering on their nodes which is called topological decomposition. In this
filtering:

Note that a node receiving links from nodes of levels both n and k < n is still considered
to be of level n.

There is no link between nodes of each level. Why?

Applications:

Nodes with in-degree zero are considered level 0.
Nodes that receive links only from nodes of level 0 are called level 1;
Nodes that receive links only from nodes of level 0, 1 are considered level 2, and so
on.

Task scheduling: Ensuring tasks in a project are executed in the correct order.
Dependency resolution: Installing software packages with dependencies.

Dependency graph of the Linux package dpkg; produced using debtree

Exercise: Show that the adjacency matrix of a DAG is nilpotent i.e. Ak = 0 for some k.

Heterogeneous networks
Such as knowledge graphs, in which nodes and edges can have different types.

Spatial networks
Networks and graphs we considered so far are abstract graphs meaning that there
nodes do not have specific locations. However there are many networks whose nodes
have spatial locations.
Examples: Mobile antenna towers, transportation networks (such as road networks).

In this course we mainly focus on abstract networks, however see:

Barthelemy, Spatial Networks, Physics Reports 2011

