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Preface

Low dimensional topology is the study of topology in dimensions 1,2,3 and 4.
There is a dichotomy between these low dimensions and higher dimensions ≥ 5.
This was first illustrated by Smale. The Poincare conjecture predicted that
any closed simply connected manifold was homeomorphic to the sphere. In
dimension 2 this easily follows from the classification of surfaces. For a long
time people thought the next step would be dimension 3 until Smale proved the
conjecture in dimensions ≥ 5.
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Chapter 1

Knots, links, braids and
tangles, oh my!

1.1 The 3-sphere

In the first chapter I’ll be talking about knots and their various relatives. Knots
naturally live in the 3-space but because it is not compact we will use the 3-
sphere instead which is the unit sphere in R4. You can think of it topologically
without using R4 as the 3-ball with its boundary identified to a point. There are
other interpretations like if you take two balls and identify their boundaries (two
copies of S2) using an orientation reversing homeo. It is identity on latitude
but sends longitude to its negative.

You can also take two solid tori and do the same thing. The last two examples
are Heegaard decompositions of 3-sphere.

1.2 Knots and links

Definition 1.2.1. A knot is a smooth embedding φ : S1 → S3 up to reparametriza-
tion. An oriented knot is the same thing when we’ve chosen an orientation on
the domain.

Up to reparametrization mean that if u : S1 → S1 is a diffeomorphism (i.e.
reparametrization) then we regards φ and φ ◦ u to represent the same knot. In
other words a knot is a closed connected smooth submanifold of S3.

Examples: unknot, trefoil (DNA trefoil), figure eight
We require smoothness to avoid wild knots with fractal behavior as in figure

1.2.2.

Exercise 1.2.2. Show that there are no wild knots in two dimensions.

Definition 1.2.3. A link with k components is a smooth embedding of a disjoint
union of k copies of S1 to S3. An orientation on a link is given by choosing
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Figure 1.1: A wild knot

orientations on each S1 component in the domain.

A link with k components admits 2k different orientations. Of course a link
with a single component is a knot.

Examples: Hopf link, Borromean link
We often consider a link as the image of the embedding.

Example 1.2.4. Torus knots and links: T (p, q) is the intersection of xp = yq

in C2 with the unit sphere. It can be viewed as wrapping around a torus p times
horizontally and q times vertically. If (p, q) = 1 this is a knot and otherwise a
link. Knots that can be obtained this way are called algebraic.

Exercise 1.2.5. Consider the Hopf fibration p : S3 → S2 given by p(z1, z2) =
(2z1z

∗
2 , |z1|2 − |z2|2). Show that for any two points a, b ∈ S2 the union p−1(a)∪

p−1(b) ⊂ S3 is a Hopf link.

Any two links with the same number of components are homeomorphic to
each other. So we need a different notion of equivalence of links.

Definition 1.2.6. Two links K,L are equivalent if there is an orientation pre-
serving homeomorphism φ of S3 such that φ(K) = L. If in addition K,L are
oriented then we require φ(K) to have the same orientation as L.

Def of orientation preserving for contin and smooth φ. Why we differentiate
between non-orient preserv?

Intuitively it seems that trefoil is not isotopic to unknot but the actual proof
is not easy. We will need knot invariants.

The complement of a knot is S3 minus a tubular neighborhood of the knot.
So it’s a 3-manifold with a torus boundary component.

An equivalence class is called a knot type. Knot types can be seen as open
cells in the space of all immersions S1 → S3. The walls between cells are singular
knots.

Definition 1.2.7. Two links K,L are isotopic if there is a one parameter family
φt of orientation preserving homeomorphisms φt of S3 such that φ0 = id and
φ1(K) = L.
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In Intuitively an isotopy is a continuous deformation of the know in such a
way that at all times t the knot φt(K) doesn’t intersects itself.

Ex: A knot is isot to unknot if it bounds an embedded disk in S3.

Proposition 1.2.8. Two links K,L are equivalent iff they are isotopic.

Proof. If they are isotopic then by definition there is a one parameter family φt
so that φ(K) = L so K,L are equivalent. For the reverse we need a theorem of
Fisher which says if φ is an orientation preserving homeomorphism of a closed
oriented 3-manifold then φ is isotopic to identity.

Isotopies are isomorphisms between links i.e. they don’t change link type.
You may ask what about general morphisms between links, morphisms between
different link types. Those are given by link cobordisms whose study we postpone
until

Further Remarks

One can consider knots and links in higher dimensions as well. As an easy
exercise you can argue that any link embedded in R4 is isotopic to the unlink.
However if we look at embeddings of S2 to S4 then we are in for nontrivial knot
types.

1.3 Link projections and diagrams

Definition 1.3.1. A polygonal link is a link which consists of finitely many
straight line segments in R3.

Theorem 1.3.2. Every (polygon) link L is equivalent to a polygon link.

For each p ∈ L let NpL be the normal plane to L at p and Bε(p) ⊂ NpL
be a disk of Euclidean radius ε > 0. BεL = ∪p∈LBε(p) is called a tubular
neighborhood of L.

Proof.

A projection is a linear surjective map R3 → R2. Such a projection is
determined by a line in R3 so the set of all such projections can be identified by
RP 3.

Definition 1.3.3. For a link L ⊂ R3 a projection φ is regular if φ|L is an
embedding outside a finite number of double points. If L is polygonal then we
require φ to be 1-1 on the set of vertices of L.

Theorem 1.3.4. Every piecewise linear link L admits infinitely many regular
projections to the plane. Moreover the set of the regular projections for L, is
dense in RP 2.
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In other words any projection map can be perturbed slightly to become
regular for L.

The image of such a regular projection is called a link diagram for L.

Definition 1.3.5. A link diagram for L is an immersion ψ → R2 which is an
embedding outside a finite number of double points (called crossings). Together
with a specification of an over or under crossing at each crossing.

Any link diagram gives us an isotopy class of links. This is given by viewing
the diagram as lying in R2 × R and raising or lowering the diagram at each
crossing according to whether

Conversely given a link L we can isotope it to a polygonal link using using
theorem ?? and then using theorem ?? to obtain link diagrams for it. So we can
represent knots by knot diagrams and we know when two diagrams represent
the same knot type.

Now the question we are faced with is how equivalence of links translate into
their diagrams. The answer is given by a theorem of Reidemeister.

Theorem 1.3.6. Any two projections of two isotopic polygon links L0, L1 are
related to each other by a sequence of Reidemeister moves together with plane
isotopies.

Theorem 1.3.7 (Moise). Two polygon links are equivalent iff they are related
by a sequence of piecewise linear maps.

Idea: 1-For each polygonal link L there is a triangulation of S3 such that L
is a union of edges of triangles in this triangulation. 2-For any triangulation ∆
of S3 and any homeomorphism φ : S3 → S3 we can refine ∆ to a ∆′ and isotope
phi to φ′ such that φ′ is simplicial w.r.t. ∆′.

Proof. It is clear that a Reidemeister move preserves the link type.

Definition 1.3.8. The crossing number of a link is the minimum number of
double points in a diagram for the link.

1.4 Operations on knots

1.4.1 Reverse

The reverse of an oriented knot is given by reversing its orientation.

A knot is called invertible if it is equivalent to its reverse. Trefoil and figure
eight knots are invertible. (You can rotate them.) The first example of a non-
invertible knot was discovered by Trotter. His proof uses hyperbolic geometry.
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1.4.2 Mirror of a link

The reflection or the mirror of a knot is given by applying an orientation revers-
ing diffeo of S3 to it. (The choice doesn’t matter because the group of all such
diffeos is connected.) We can choose the diffeo which sends (x, y, z) to (x, y,−z)
to it changes all over crossings to under crossings and vice versa.

A link is called chiral if it is not equivalent to its mirror and amphichiral
otherwise. Figure eight is amphichiral (using explicit deformation) but trefoil
is not (using Jones polynomial).

Figure 1.2: Isotoping the figure eight knot to its mirror

1.4.3 Connected sum of two knots

The connected sum of two knots can be defined easily. It is well defined and
abelian.

Definition 1.4.1. A knot is prime if it is not the unknot and if it is isotopic
to a to a direct sum K1#K2 then one of the Ki is the unknot.

Example: Trefoil is prime because the only nontrivial decomposition for it
is into sum of a knot with 1 crossing and one with two and there are no such
knots.

Theorem 1.4.2. Any knot can be expressed uniquely as a direct sum of a finite
number of prime knots.

When a knot K is not prime then it can be decomposes as K1 +K2. If any
of the K1,K2 is not prime then they can be written as sums of other knots and
so on. The question is why should this process end in finitely many steps. You
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may think the crossing numbers of Ki is strictly less than those of K but this
has not been proved.

Conjecture 1.4.3.
c(K + L) = c(K) + c(L). (1.1)

Theorem 1.4.4 (Marc Lackenby).

c(K + L) ≥ c(K) + c(L)

152
. (1.2)

Instead in the next section we will define a new invariant of knots called genus
which is additive w.r.t. sums and we use it to show prove the decomposition
theorem.

1.4.4 Satellite operation

Satellite operation is a far reaching generalization of connected sum.

1.5 Seifert surfaces and the proof of the decom-
position theorem

l only prove existence and not uniqueness. To prove it we assign a numerical
invariant to knots called genus and show that it is additive w.r.t. direct sum.
Genus and Seifert surfaces are of central importance to knot theory.

Theorem 1.5.1 (Seifert). For any oriented link K there is a compact connected
orientable surface (called a Seifert surface) F s.t. ∂F = K with the induced
orientation.

Definition 1.5.2. A resolution of a crossing

Seifert Algorithm. Start with a diagram D for L. Resolve all the crossings in an
orientation preserving way. We are left with a number of simple closed curves in
the plane. Imagine each one of these closed curves bounds a disk. Then in place
of each erased crossing attach a twisted ribbon connecting the corresponding
disks. This way we obtain a surface S. It is orientable because it has two
sides.

Note that there can be Seifert surfaces for a link which cannot be obtained
from applying the Seifert algorithm to any diagram for the link.

Example 1.5.3. For unknot (genus 0,1), trefoil, Hopf link For links the out-
come of the algorithm depends on the orientation.

Starting with any Seifert surface S for L you can attach handles to it to
obtain a higher genus Seifert surface for the same link. On the other hand we
can not arbitrarily decrease the genus of a Seifert surface for a fixed link.
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Definition 1.5.4. The minimum genus of a Seifert surface for K is called the
genus of K.

Note that it is possible that this lowest genus surface may not be obtained
from Seifert algorithm applied to any projection of the link.

For example g(unknot) = 0 and any link with genus zero is equivalent to
the unlink.

For the Seifert surface F obtained from the Seifert algorithm the Euler char-
acteristic is v − e+ f and in terms of genus it equals 2−#∂F − 2g(F ). If d, b
are the number of disks and bands respectively then v = 4b, e = 6b, f = b + d
so χ(F ) = d− b. Therefore 2g(F ) = 2− d+ b−#K. So the Seifert surface we
got for trefoil has genus one.

From this we see that twist knots all have genus one (assuming they are not
equivalent to the unknot). We can also deduce that g(K) ≤ c(K)/2.

Seifert surface for trefoil using Seifert algorithm

Theorem 1.5.5. For any two knots K,L we have g(K + L) = g(K) + g(L).

Proof. If we have two Seifert surfaces for K and L (which are two surfaces with
a single boundary component) we can take their connected sum to get a Seifert
surface for K#L. This gives g(K#L) ≤ g(L) + g(L).

Now for the reverse inequality pick a Seifert surface F for the sum with
minimal genus. Consider a sphere S containing K and intersecting the sum in
only two points. We can assume S intersects F transversely and so in a finite
number of intervals and a single arc β which connects the two endpoints. If
F ∩ S = β then F is a connected sum of a Seifert for K and one for L so
g(F ) = g(K) + g(L). We show that we can surger out pieces of F to turn the
intersection into a mere β.

Now the circles in the intersection are disjoint so we can take the innermost
one. By Jordan curve theorem it decomposes S2 into two discs. We cut F
along the inner disk and attach two parallel disks instead. This way we get
a new surface F1 which intersects S in one less component. F1 is compact
and orientable and so, if connected, it is a Seifert surface for the sum. But
connectivity implies g(F1) < g(F ) contradiction. So F1 is disconnected and we
can take its connected component which contains K#L. We can repeat this
argument to remove all circle components and get the connected sum Seifert
Surface with genus g(K) + g(L).

Corollary 1.5.6. If K#L ' © then both K,L are unknots. So no nontrivial
knot has an inverse w.r.t. #.

If we have a knot K which is not prime then K ' K1#K2. If one of the
Ki is not prime then it decomposes and we can repeat this process. We can
use genus to argue that this process won’t go forever and will stop after a finite
number of iterations.
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1.6 Fundamental problems of knot theory

Equivalence problem

Given two knot diagrams are they equivalent?

Unknot detection

In particular is a given knot diagram equi to the unknot? For example is trefoil
equi to unknot? Figure 1.6 shows a complicated diagram for the unknot.

Figure 1.3: Ochiai unknot

Tabulating knots and links

Rolfsen table

Unknotting number

1.7 Braid groups and links

In this section we want to introduce a family of groups {Brm}m∈N called braid
groups and an equivalence relation ∼ on them called Markov relation such that⋃
mBrm/ ∼ is the set of all link types.
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Definition 1.7.1. A braid on m strands is an embedding of m line segments in
C× [0, 1] in such a way that the strands don’t have horizontal tangents and the
endpoints are mapped to {1, . . . ,m} × {0, 1}. We consider braids up to isotopy.

Braids can be composed by concatenation. We have an identity braid and
the inverse of a braid is given by flipping it vertically. Associativity is obvious.
So we get a group Brm.

Brm has a presentation due to Artin.

Theorem 1.7.2. Generators are σ1, ..., σm−1 and the relations are A1) σi◦σj =
σj ◦σi if |i−j| > 1 and A2)σiσi+1σi = σi+1σiσi+1 in addition to A3) σiσ

−1
i = 1.

Proof. Idea of proof. Seems to be exactly the same as proof of Reidemeister
Define a group G with generators x1, . . . , xm−1 and relations . Define a ho-
momorhism φ : G → brm given by φ(xi) = σi. φ is obviously onto so we
need to show that it is 1-1. Let g be an element of G such that φ(g) = 1 and
g = xk1i1 · · ·x

kn
in

be a word describing it. φ(g) = σk1i1 · · ·σ
kn
in

is a braid, given as
a composition of elementary braids which is isotopic to identity. So there is a
sequence of ∆ moves that turns φ(g) into the identity braid.

So the proof is reduced to showing that if two braid words w1, w2 are related
by a ∆ move then one can be transformed to the other by a sequence of relations
A1- A3.

As in the proof or Reidemeister’s theorem we must look at different cases for
what the triangle ABC which turns into the line AB in the ∆ move contains.
Case 1: It’s empty.
Case 2: It contains one line entering and exiting ABC. This corresponds to A1
or A3.
Case 3: It contains a crossing. This corresponds to A2.
Case 4: It contains many lines and or crossings. Then we can subdivide ABC
into small triangles such that each one contains only one line or crossing.

Corollary 1.7.3. The group Br2 is isomorphic to Z.

Corollary 1.7.4. Each one of Artin generators σi ∈ Brm has infinite order.

Proof. Imagine σki = e for some k. Then σki = 1 is isotopic to identity. In
particular the i’th and (i+ 1)’st strands of this braid alone can be isotoped to
the identity braid on two strands. But those two strands form a σ1 ∈ Br2 and
so σ1 would be isotopic to identity which is contradiction.

Corollary 1.7.5. The homomorphism Brm → Brn for m ≤ n which sends the
ith generator in the domain to the ith generator to the target is 1-1.

Proof is similar to the proof of the above corollary.
If you quotient Brm with σ2

i = e for all i then you’ll get the symmetric group.
In a poetic language elements of the symmetric group are intrinsic permutations
while elements of the braid group are extrinsic ones.

Definition 1.7.6. The pure braid Pm < Brm consists of braids which do not
permute the elements.
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The pure braid group Pm is iso to the π1 of Cm\{zi = zj} and Brm is
isomorphic to the π1 of the quotient of this space by the action of the symmetric
group.. The latter space is called configuration space.

We can identify the top and bottom endpoints of a braid to get a link. This
is called link closure.

Theorem 1.7.7. (Alexander) Any link K is isotopic to the closure of a braid
β.

Proof involves getting rid of the maxima and minima of the y-coordinate on
the link diagram.

Proof. Start with a diagram D for K. The y-coordinate restricted to D has some
minima and maxima. We draw a square S containing D and will try to isotope
D to move all these extrema outside of the square. Then the y coordinate has
no extrema inside S and so what lies inside S would be a braid. Let a, b be
minimum and maximum respectively for y such that there is no other extrema
in between them when we move along K from a to b in the direction in which y
increases. Let a0 = a, a1, . . . , ak = b be points on this strand such that between
ai, ai+1 there is exactly one intersection of K. There are two cases.

Case I: k = 1. We cut K at a point in between a, b and move the endpoints
to the S, in such a way that they pass over all other strands. We connect the
endpoints by an arc outside S.

Case II: K > 1. We start by doing a similar procedure like in Case I for
a = a0 and a1. I.e. we cut K at a point P between a0, a1 (which is not the
crossing) and then move the endpoints to the upper and lower edges of S. This
time we should note whether the strand that we cut goes over or under at the



1.7. BRAID GROUPS AND LINKS 17

crossing between a0, a1. If goes above, the segments a0, P and P, a1 go above
all other strands and vice versa. Then we move to a1, a2 and after repeating
this procedure a finite number of times we’ll be in Case II.

We do this procedure for all strands of K connecting a min to a max and
after that the diagram we get is the closure of a braid inside S.

The reason this diagram is isotopic to the original one is that we can move
the segments outside S back inside S one by one to get the original diagram.

Example 1.7.8. The torus knot T (p, q) is given by the closure of the braid
(σ1σ2 · · ·σp−1)q.

Theorem 1.7.9. (Markov) Two braids have isotopic closures iff they are related
by one of the two Markov move: Conjugation or (de)stabilization (adding one
extra strand with a twist).

It is easy to see that Markov moves do not change the type of the braid
closure. Markov one is equivalent to RII, Markov 2 is equi to RI and RIII is
equi to the braid relation. The proof of the reverse direction is much more
difficult because after applying a Reidemeister move you may no longer have a
braid closure.

Exercise 1.7.10. Let L be the closure of β ∈ Brm and L′ be the 180 degree
rotation of L which is the closure of a braid β′. Find a sequence of Markov
moves that sends β to β′. Do the same for turning L upside down.

Exercise 1.7.11 (Burau representation). Consider the matrix A(t) =

(
1− t t

1 0

)
and let ρi(t) = 1⊕· · ·⊕1⊕A(t)⊕1⊕· · ·⊕1 where the number of 1’s before A(t)
is i− 1. Show that the map σi → ρi for 1 ≤ i ≤ m− 1 gives a representation of
the braid group Brm.
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1.8 Tangles

Tangles are what you get if you chop a link into pieces, or in other words a link
with endpoints. They also generalize braids.

Definition 1.8.1. An (m,n) tangle T is a 1 dimensional submanifold of C ×
[0, 1] such that ∂T consists of m+n points m of which are {1, . . . ,m}×{0} and
n of them are {1, . . . , n} × {1}.

An (l,m) tangle can be concatenated with an (m,n) tangle to give an (l, n)
tangle. This way tangles form a category: objects are natural numbers and
morphisms between m,n are (m,n)-tangles.

The elementary tangles are identity, caps, cups and elementary braids as in
Figure.

Proposition 1.8.2. Any tangle is isotopic to a composition of elementary tan-
gles.

Proof. Consider the restriction of the z coordinate to the tangle. The extrema
of this function are given by caps, cups and the endpoints of the tangle. When
we cut out the caps and cups we are left with a generalized braid (with extra
endpoints) which is a composition of twists.

Proposition 1.8.3 (Yetter [1]). The following are all the commutation rela-
tions between elementary tangles. If |i− j| > 1 we have:

σiσj = σjσi (1.3)

∩i∪j = ∪j−2 ∩i (1.4)

∩iσj = σj∩i ∪iσj = σj∪i, (1.5)

and for any i we have:

σi∪i = ∪i (1.6)

σiσ
t
i = id (1.7)

σiσi+1σi = σi+1σiσi+1 (1.8)

∩i;m∪i+1;m = idm−1 (1.9)

σi∪i+1 = σti+1∪i σti∪i+1 = σi+1 ∪i . (1.10)
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1.8.1 Conway tangles
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Chapter 2

Invariants of links

2.1 Invariants in general

By a link invariant we mean a function which assigns a unique value to any link
type. This is equivalent to an assignment of a value to each link diagram in
such a way that if two diagrams are related by a Reidemeister move then they
get the same value. Similarly it can be given by assigning a value to each braid
in such a way that is invariant under Markov moves. What we mean by “value”
and “assignment” can be made precise using functors and categories.

Links invariants are useful for distinguishing between two different knot
types.

We’ve already seen examples of knot and link invariants e.g. crossing num-
ber, genus, number of components, unknotting number for knots, unlinking
number for links.

Evolution of link invariants: classically: numbers, 1900s: polynomials, 2000s:
chain complexes.

2.2 Bridge number

A link diagram D is said to have bridge number k if it can be partitioned to a set
of arcs α1, . . . , αk, β1, . . . , βk such that in all the crossings in D the α curves go
over the β curves (and no crossings between α curves alone or β curves alone).
We can think of the α curves as lying above a given plane P in space (and have
their endpoints on P ) while β curves lie below it.

Definition 2.2.1. The bridge number of a link is the minimum of the bridge
numbers of its diagrams.

A 1-bridge knot is the unknot. Trefoil and figure eight are 2-bridge.
There are infinitely many 2-bridge knots. They can be described as fol-

lowes. Let the curves α1, α2 be two line segments on the x-axis with end points
A,B,C,D (from left to right). The curves β1, β2 join these endpoints without

21
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intersecting each other. We assume β1 connects A to C and β2 connects B to
D. Let p be the number of segments to which each α curve is divided by β
curves. (So β curves pass under each αi p− 1 times.) Let q be given as follows:
start from B and follow β2 untill you reach α2 at a point Q and there are q
other times β passes α2 to the left of Q (including the one passing through C).
Let us denote this knot (or link) by b(p, q).

Theorem 2.2.2. b(p, q) and b(p′, q′) are equivalent iff p′ = p and q′ = q±1.
Here q−1 is an integer between 1 and 2p− 1 such that qq−1 = 1 mod 2p.

Theorem 2.2.3. b(p, q) is equivalent to the closure of the rational tangle given
by (a1, . . . , an) if p/q equals the continued fraction from (a1, . . . , an). In partic-
ular two rational links are equivalent iff they have the same fraction.

Theorem 2.2.4 (Schubert).

br(K#L) = br(K) + br(L)− 1 (2.1)

A corollary of this theorem is that all 2-bridge knots are prime.

2.3 Linking number of two-component links

Imagine we have an oriented link L with two components J,K. Pick a diagram
for this link. To each crossing between I, J we assign +1 if it is a right handed
crossing (i.e. the strand heading right goes over) and −1 otherwise. Half the
sum of these signs is called the crossing number of L and is denoted lk(I, J).
Note that lk does not take into account the crossings of individual I, J with
themselves so it doesn’t change if we flip such crossings.

Example for Hopf

Lemma 2.3.1. Linking number is always an integer and we have lk(I, J) =
lk(J, I).

Proof. Let n1, n2 be the number of positive crossings in which I resp. J goes
over and n3, n4 are similarly the number of negative crossings. Then (if either
I or J are simple closed curves) it follows from Jordan curve theorem that
n1 + n3 = n2 + n4 so lk(I, J) = n1 − n4 = n2 − n3 = lk(J, I).

Lemma 2.3.2. Linking number is invariant under link isotopy.

Proof. To show that linking number is invariant under isotopies of the link
J ∩K we look how it changes under Reidemeister moves. RI affects only one
component so it doesn’t change lk. For RII it is easy to see that the signs of the
two crossings which are canceled are opposites. For RIII we have to consider
different cases with different orientations on the strands and I leave that for you
as an exercise.

Example: Hopf link has linking number one. So it’s not equivalent to unlink.
Image of whitehead link
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Exercise 2.3.3. Compute lk of Whitehead link in Figure ?? to be zero.

So a two component link with linking number zero may be linked.
If we reverse the orientation of one of the components of L then its linking

number is multiplied by −1. So if we reverse both components the linking
number doesn’t change.

Gauss: The linking number of two links can be given by an integral. If
r1, r2 : S1 → R3 represent our two links then

lk(I, J) =
1

4π

∫
S1

∫
S1

r1 − r2
||r1 − r2||2

dr1 × dr2 (2.2)

We can use this theorem to prove the invariance of lk without using Reide-
meister’s theorem.

2.4 The Alexander polynomial from Seifert ma-
trices

There are several different ways to define the Alexander polynomial of a link.
In this section we look at one of them which uses Seifert matrices and in the
following sections we will see two more.

Start with a Seifert surface F for a link L which has genus g. The first
homology of F has 2g + r − 1 generators. Pick a set of generators and a set
of simple closed curves in F representing these generators. If a, b are two such
curves on F we can push a a bit “down” F to get a closed curve a− in S3.
To be more precise we can thicken the embedding of F in S3 to an embedding
φ : F × [0, 1] → S3. This is because F is orientable and so has a tubular
neighborhood . The thickening is chosen so that φ(F × {−1}) lies “below”
F . This means that for any point p ∈ F the vector from p to φ(p,+1) is
in the direction of the orientation normal vector field to F . Then we take
a− = φ(a× {−1}).

Definition 2.4.1. The Seifert matrix V of (K,F ) has entries lk(a, b−) for a, b
representing generators of H1(F ).

Definition 2.4.2. The (Conway normalized) Alexander polynomial of K is
given by

∇K(z) = det(−tV + t−1V t). (2.3)

where z = t− t−1.

The reason the right hand side can be written as a polynomial in z is that if
we call it f(t) then f(t−1) = det(−t−1V + tV t) = det(−t−1V t + tV ) = f(−t).

Note that we still don’t know if this is a knot invariant. The above definition
depends on a choice of a Seifert surface and a set of generators for it.

Example 2.4.3. • We obviously have ∇(©) = 1.
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• For the Hopf link the Seifert algorithm yields a surface of genus zero whose
H1 has 0+2−1 = 1 generators. If a denotes this generator then lk(a, a−) =
−1 so the Alexander polynomial is ∇Hopf = z.

• For the trefoil with its minimal genus Seifert surface F , H1(F ) has two
generators which we call a, b. We have lk(a, a) = lk(b, b) = 1, lk(a, b) =
−1, lk(b, a) = 0. So Alex of trefoil is det(−tV + t−1V t) = (t− t1)2 + 1 =
1 + z2.

Invariance of the Alexander polynomial

To prove invariance we must see how the Seifert matrix of a link L changes
under
I) Changing the basis for the first homology of the Seifert surface (including
changing the orientations of the generators).
II) Changing the Seifert surface.

When we do a change of basis, the Seifert matrix A changes to PAP t where
P is the change of basis matrix. It is an invertible matrix which has integer
entries so detP detP−1 = 1 so detP = ±1. This clearly doesn’t change the
Alexander polynomial. The case of changing the Seifert matrix is more difficult
and is the subject of the following definition and proposition. Recall that any
two (abstract) oriented surfaces with the same number of boundary components
can be converted to each other by a finite number of surgeries i.e. removing two
disjoint disks from the surface and connecting the resulting two circles by a
cylinder (or the reverse of this operation). Similar surgery operations can be
done on embedded surfaces provided that the cylinder lies on one side of the
surface.

Proposition 2.4.4. If F, F ′ are two Seifert surfaces for a link L then there is
a sequence F0 = F, F1, . . . , Fn = F ′ of Seifert surfaces for L such that for each
i either Fi is obtained from Fi−1 or Fi−1 is obtained from Fi by an embedded
surgery, or is obtained by an isotopy.

Definition 2.4.5. Let A be a square matrix and B one of the following: A ξ 0
0 0 1
0 0 0

 or

 A 0 0
η 0 0
0 1 0

 (2.4)

where ξ is an arbitrary column and η is a row. We call B an elementary
enlargement of A and A an elementary reduction of B. Two square matrices are
said to be S-equivalent if they are related by a sequence of elementary reductions
or enlargements OR conjugation by a matrix P of determinant ±1.

Lemma 2.4.6. Any two Seifert matrices obtained from any two Seifert surfaces
F, F ′ for a link L are S-equivalent.
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Proof. Let F ′ be obtained by an embedded surgery on F . Then the H1 of F ′

has to more generators a, b than that of F . b can be taken to be a meridian
of the cylinder that we attached to F to obtain F ′ and a can be taken to be
its longitude. b is away from any generator f for H1(F ) and so lk(b, f−) =
lk(f, b−) = 0. It is easy to see that either a ∪ b− is an unlink and a− ∪ b
is the Hopf link or the other way around. So lk(a, b−) = 0, lk(b, a−) = 1 or
lk(a, b−) = 1, lk(b, a−) = 0. Why not -1? In the first case the Seifert matrix for
F ′ is of the form  A ∗ 0

η ∗ 0
0 1 0

 (2.5)

which can be turned into a matrix of the form (2.4) by elementary row opera-
tions. The second case is similar.

We leave it as an exercise for the reader to show that the value of det(A−tAt)
doesn’t change when A is replaced by a matrix S-equivalent to it. From this we
get that the Alexander polynomial is indeed a link invariant!

Corollary 2.4.7. The trefoil is not isotopic to the unknot.

Corollary 2.4.8. For a knot K, deg∇K ≤ 2g(K) ≤ c(K).

Proposition 2.4.9.
∇K#K′ = ∇K · ∇K′ (2.6)

Proof. Pick Seifert surfaces S, S′ for K and K ′. The boundary connected sum
S#S′ gives a Seifert surface for K#K ′. If we pick bases for H1 of S and S′

their union gives a basis for H1(S#S′). This way the Seifert matrix of K#K ′

is the direct sum of those of K and k′ and the result follows.

Proposition 2.4.10. The Alexander polynomial of a link with an unlinked com-
ponent is zero. In particular the Alexander polynomial of the unlink is zero.

Proof. We can have two disjoint connected surfaces F1, F2 bounding the two
unlinked components. Let F be the connected surface obtained by making a
tunnel between the two surfaces. If we take a basis for the H1 of F1∪F2, we can
obtain a basis B for H1(F ) by adding a generator corresponding to the meridian
e of the tunnel. We have lk(e, f−) = lk(f, e−) = 0 for any f ∈ B including e
itself. So the last row and column of the Seifert matrix are zero and so is the
Alexander polynomial.

Proposition 2.4.11. The Alexander polynomial of a knot K is the same as
those of its mirror K∗ and its reverse −K.

Proof. We show that M−K = M t
K and MK∗ = −MK . If we reverse the orien-

tation of K then the orientation of its Seifert surface is reversed as well. Now
the b− of the new regime is b+ of the old. So the (a, b) element in M−K is
lk(a, b+) = lk(a−, b) = lk(b, a−).
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For the K∗ we construct the Seifert surface using the Seifert algorithm.
Each ribbon in this surface are twisted in the opposite way of the corresponding
ribbon for the Seifert surface. This amounts to all crossings of a, b− be flipped
for any two homology generators a, b. This results in their linking number be
multiplied by −1. (Use one of the ways of defining lk for each case.)

Further remarks

• Alexander originally defined his polynomial by looking at the infinite cyclic
cover of the knot complement. As we will see the H1 of any knot com-
plement X = S3\K is isomorphic to Z. Therefore it has an infinite cyclic

cover X̃. The group of deck transformations of this covering is of course
isomorphic to Z and let t be a generator for it. This way H1(X̃) can be
regarded as a Z[t, t−1]-module called the Alexander ideal.

The polynomial defined this way lives in Z[t1/2, t−1/2] and is not unique.
It is given up to multiplication by a unit element in Z[t, t−1]. This would
make adding the Alexander polynomials of two different links (and hence
the skein relation in the next section) meaningless. The Conway normal-
ized skein relation removes this ambiguity. One has z = t1/2 − t−1/2.

• The signature of the Seifert matrix is another knot invariant (called knot
signature).

2.5 Conway skein relation

One can compute the Alexander polynomial using skein relations.
The skein relation was first proved by Alexander himself but his result left

unnoticed for decades when it was rediscovered by Conway in 1970.

Theorem 2.5.1 (Conway skein relation). Let L+, L− and L0 be link diagrams
which differ only in a small neighborhood of a particular crossing, as in Figure
2.5. Then we have

∇(L+)−∇(L−) = z∇(L0) (2.7)

∇(©) = 1. (2.8)

Moreover the above two equations uniquely determine ∇.
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Note that if we start by declaring the skein relation, it is not clear if ∇ is
well defined i.e. if we enumerate the crossings in different ways we would get
the same result. (The proof is indeed complicated.)

Proof. We can use Seifert algorithm to construct Seifert surfaces S0, S± for the
three links which are identical outside a neighborhood of the crossing. Recall
that for such a surface we have 2g+r−1 = 1−d+b and the left hand side is just
the rank of the H1 of the surface. So the rank of H1(S±) is one more than that
of H1(S0). Let f1, . . . , fn be a basis for H1(S0) and e± be the extra generator for
S±. Close examination shows that e−+ goes under e+ at the intersection while e−−
goes over. Therefore lk(e+, e

−
+) = lk(e−, e

−
−)−1. The rest of the Seifert matrices

for L+ and L− are the same so a simple computation yields the skein relation.
∇L+

−∇L− = (−t+ t−1)(N−1)∇L0
−(−t+ t−1)N∇L0

= (t− t−1)∇L0
= z∇L0

.

Why uniquely determined?

Figure 2.1: Skein relation (The joke is due to Ron Fintushel.)

Example 2.5.2. Let’s compute the Alexander polynomials of the Hopf link and
the trefoil using the skein relation. If we pick a positive crossing in the Hopf
link then L− is an unlink with two components and L0 is isotopic to the unknot
so ∇Hopf = z.
If we pick a positive crossing on the trefoil K then K− ' © while K0 is the
Hopf link. Therefore we have ∇trefoil = z2 + 1. These values agree with the
computations using the Seifert matrix.
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Example 2.5.3. If Tn denotes the twist knot with n half twists then we have
L+ = Tn, L− = Tn−2 and L0 is the Hopf link. So we get ∇Tn = −z2 +∇Tn−2 .
We also have T0 =© and T1 is the trefoil.

Exercise 2.5.4. Compute the Alexander polynomial of the figure eight knot and
of the Whitehead link. Show that the Alexander polynomial of the Kinoshita-
Terasaka knot in picture 2.5 equals 1. Why is not isotopic to unknot.

Figure 2.2: Kinoshita-Terasaka knot has the same Alexander polynomial as the
unknot but has genus 2.

Proposition 2.5.5. For a knot K we have ∇K(1) = 1.

Exercise 2.5.6. Prove Prop. 2.4.10 using the skein relation.

2.6 Knot and link groups

By the complement X(L) of a link L we mean S3 minus a tubular neighborhood
of the link. It is a 3-manifold with boundary, it’s boundary consists of k tori
where k is the number of components of the link.

If two links are equivalent then their complements are homeomorphic. How-
ever the reverse does not hold in general (for knots that are not prime). If
φ : X(K) → X(K ′) is a homeomorphism then it induces a homeomorphism
∂X(K) → ∂X(K ′) between the torus boundaries T, T ′. This latter map can
be extended to solid B,B′ tori bounding T, T ′. This way one obtains a map
φ̃ : X(K) ∪B → X(K ′) ∪B′.

Definition 2.6.1. The group of a link L is π(K) := π1(X(L)).

It is of course a knot invariant since an equivalence between two knots induces
an equivalence between their knot groups. It is a very powerful invariant.

Definition 2.6.2. For a knot K ⊂ S3, a meridian is an oriented simple closed
curve lying on the boundary T of a tubular neighborhood of the knot which doesn’t
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separate T into two parts and bounds a disk embedded in the tubular neighbor-
hood . It is oriented so that its linking number with the knot is +1.
A longitude λ for K is another oriented circle in T such that there is an em-
bedded annulus A in the tubular neighborhood such that ∂A = K ∪−λ and such
that lk(K,λ) = 0.

Exercise 2.6.3. Show that the first homology of any knot complement is iso-
morphic to Z and is generated by a meridian of the knot.

Because H1 is the abelianization of π1 it follows that all knot groups are
infinite. This also means that the longitude of the knot is homologous to zero,
which also follows from the existence of Sifert surfaces. However the longitude
is not homotopic to zero unless K is the unknot.

We have π(©) ∼= Z because X(©) is isotopic to a solid torus (with the
“solid” part lying “outside” the tubular neighborhood of the knot).

Proposition 2.6.4. A knot K whose group is isomorphic to Z is equivalent to
the unknot.

What about a link? To prove this we need the following theorem.

Theorem 2.6.5 (Papakyriakopoulos). If M is a 3-manifold with boundary such
that the induced map ι∗ : π1(∂M) → π1(M) is not injective then there is an
embedded disk in M whose boundary lies on ∂M and such that [∂D] ∈ π1(∂M)
is nontrivial.

Now to prove the proposition 2.6.4, let M = X(K). The induced map
π1(∂M) = π1(T 2) = Z2 → π1(M) = π(©) = Z cannot be injective so by
the loop theorem there is an embedded disk D in M whose boundary is not
homotopic to zero in ∂M . This can not be a meridian for K so (because the
meridian is nontrivial in π1(X(K))), it is homotopic to a longitude λ for K.
Adding the annulus comming from the definition of a longitude to D we get an
embedded disk in S3 which bounds K.

Proposition 2.6.6. A knot complement has trivial higher homotopy groups.

Proof. For π2 this follows from Sphere theorem of Papakyriakopoulos which
asserts that if a 3-manifold has nontrivial π2 then it contains an embedded
homotopically nontrivial sphere. For the higher groups one can look at the
universal cover of the complement and use Hurewicz’s theorem which says for a
simply connected cell complex the first nonvanishing homology and homotopy
groups occur in the same dimension and are isomorphic.

Two non-isotopic knots that are not prime may have homeomorphic comple-
ments. To observe this first note that X(K) and X(K∗) are homeomorphic (by
an orientation reversing homeomorphism) and X(−K) is the same as X(K).

Also X(K#K ′) can be obtained by cutting the boundaries of X(K) and
X(K ′) along a meridian and then gluing them to each other. (Boundary con-
nected sum)
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Now take any two knots K,K ′ and consider K#K ′ and K# − K ′∗. The
complements of these two knots are obtained by taking boundary connected
sums of X(K), X(K ′) resp. X(K),−X(K ′). The results are homotopy equiv-
alent spaces. This is because the orientation reversing map on the anulus is
homotopic to the identity. However the two composite knots are in general not
isotopic, for example when both K,K ′ are the trefoil, as can be shown by the
Jones polynomial.

Proposition 2.6.7. Two prime knots are equivalent iff they have isomorphic
groups.

This theorem follows from the following two.

Theorem 2.6.8 (Whitten). If K,K ′ are two prime knots whose groups are
isomorphic to each other then their complements are homeomorphic.

Theorem 2.6.9 (Gordon, Luecke). If two knots K,K ′ are prime and φ :
X(K) → X(K ′) is a homeomorphism then φ can be extended to a self homeo-
morphism of S3 which sends K to K ′.

It is possible that two different links have homeomorphic complements, as
in figure 2.6.

Figure 2.3: These two different links have homeomorphic complements.

Wirtinger presentation for link groups

We now describe a method due to Wirtinger to find generators and relations
for a knot group, given a diagram of the knot. We then dicuss the problem of
deciding when two group presentations yield isomorphic groups.

Start with a diagram D for your link L. At each crossing assign a generator
to the over crossing arc and two generators to the two sections of the under
crossing one. Each such generator corresponds to a loop that starts from the
point at infinity in S3 (thought of as lying above the plane of knot diagram),
goes around the given segment of L and moves back to the point at infinity.

It is easy to see that these generators satisfy the relations as in Figure 2.6.
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Figure 2.4: Wirtinger generators and relations

Remember that Van Kampen’s theorem shows that if X is a topological
space and X = A ∪ B where both A,B contain the basepoint and A,B,A ∩ B
are connected such that the

π1(X) ' π1(A) ∗ π1(B)

{ιA(α) = ιB(α)|α ∈ π1(A ∩B)}
(2.9)

where ιA, ιB are maps from π1(A ∩B) to π1(A) and π1(B) respectively.

Proposition 2.6.10. Wirtinger relations give all the relations in π(K) between
the generators gi.

Proof. We use Van Kampen’s theorem. Consider vertical solid cylinders S1, . . . Sn
encircling each and every crossing in the diagram. Let B be a small neighbor-
hood of ∪Si. Each intersection B ∩ Si is connected. Choose the basepoint to
be at infinity and so contained in each of the Si as well as in B. π1(Si\L) is
given by Wirtinger presentation (as argued above) and using Van Kampen’s for
Si’s and B theorem shows that the link group is indeed given by the Wirtinger
presentation.

Example 2.6.11. • For the trefoil we have three generators g1, g2, g3 and
the generators are g3g1g

−1
3 g−12 and g1g2g

−1
1 g−13 . We can define a homo-

morphism into S3 by g1 → (1, 2), g2 → (2, 3), g3 → (3, 1).

• For the Hopf link

It follows that the group of the unlinked union of two links is the free product
of the two links groups. Also the group of K#K ′ is the quotient of π(K)∗π(K ′)
given by identifying the generators assigned to the edges that are connected to
each other in the connected sum.

It follows that all the generators for a given component of the link lie in the
same conjugacy class. In particular a knot group has only one conjugacy class.



32 CHAPTER 2. INVARIANTS OF LINKS

In general it is not easy to decide if two group presentations yield isotopic
groups (Tietze relations). However for a knot group one can consider homomor-
phisms into the symmetric group.

2.7 Fox calculus and Alexander polynomial

In this section we see that one can obtain the Alexander polynomial from a knot
group using a formal calculus due to Fox. (It is also called free calculus.)

We want to define partial derivatives of words in letters xi. We define ∂xi

∂xj
=

δi,j ,
∂x−1

i

∂xj
= −δi,jx−2i and ∂uv

∂xi
= u∂xi

v + ∂xi
u.v.

Let π(K) be given by n generators x1, . . . , xn and m relations r1, . . . , rm.
We can make an n×m matrix J = (∂xi

rj)i,j . Then we abelianize J into J ′ by
sending xi → t. Now each (n − 1) × (n − 1) minor of J ′ gives the Alexander
poly.

As an example we compute the Alexander polynomials of torus knots Tp,q.

2.8 Temperley-Lieb algebra and the Jones poly-
nomial

The Temperly-Lieb algebra TLn consists of C[q, q−1]-linear sums of flat (n, n)-
tangles, so it’s an algebra over C[q, q−1]. (A flat tangle is a tangle which admits
a diagram without any crossings.) The product is given by composing the
tangles. One declares that an element a with k embedded circles in it equals
τ times a with the circles removed, where τ ∈ TLn is a parameter. We take
τ = −q−2 − q2. TLn is generated by elements U1, . . . , Un−1 where Ui = ∪i∩i.
The relations among these generators are as follows and are easy to check.

• U2
i = τUi

• UiUi±1Ui = Ui

• UiUj = UjUi where |i− j| > 1.

The only element of TLn which has an inverse is the identity. Number of
flat (n, n)-tangles is the Catalan number Cn. This is because we can move the
top part of a flat tangle to sit next to the bottom part and this way we get a
crossingless matching.

The closure of a flat tangle x is an unlink with some k components. We
define the trace trx = τk−1. We linearly extend over the whole TLn.

Proposition 2.8.1. We have a homomorphism φ : Brn → TLn given by
φ(σi) = qUi + q−11 and φ(σ−1i ) = q−1Ui + q1. (Homomorphism in this case
means that φ(xy) = φ(x)φ(y).)
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Proof. We verify the relations in the braid group. We have
φ(σi)φ(σ−1i ) = UiUi + 1 + (q2 + q−2)Ui = 1. Now
φ(σiσi+1σi) = (qUi+q

−11)(qUi+1+q−11)(qUi+q
−11) = q3UiUi+1Ui+qUiUi+1+

q−1Ui + q−31 + qUi+1Ui + q−1Ui+1 + qU2
i + q−1Ui.

The last two terms are equal to −q3Ui and the first term equals q3Ui so they
cancel each other and we are left with

qUiUi+1 + q−1Ui + q−31 + qUi+1Ui + q−1Ui+1.

We see that this is symmetric in exchanging i and i + 1 and so the result
follows.

Definition 2.8.2. The writhe w(D) of an oriented link diagram D is the number
of positive crossings minus the number f negative crossings in D.

Note that the writhe of a diagram is not changed under RII and RIII moves
but it is indeed changed under RI. So it is not a link invariant.

Definition 2.8.3. If a link L is given by the closure of a braid β then Kauffman
bracket < L > of L if we set

< L >= tr φ(β) (2.10)

The Jones polynomial of L is defined to be J(L)(t) = −q−3w(L) < L > where
t = q−4.

Note that the Kauffman bracket doesn’t care about the orientation of the
link while the Jones polynomial does (because it involves the writhe).

Proposition 2.8.4. The Kauffman bracket is invariant under Markov move I
(conjugation). The Jones polynomial is a link invariant with values in Z[t−1/2, t1/2].
Moreover the Jones polynomial of a link with an odd number of components (such
as a knot) lies in Z[t−1, t].

Proof. If σ is another braid then trφ(σβσ−1) = tr φ(σ)φ(β)φ(σ−1) = trφ(σ−1)φ(σ)φ(β) =
trφ(β). The second to last equality is because trace is given by closing the flat
tangle and when we do this to φ(σ−1)φ(β)φ(σ), the first and last terms come
together. (In other words trace is invariant under cyclic permutation.) This
establishes the first statement.

Since <> is invariant under MI and writhe is not changed under this move,
to prove the invariance of J we only need to show that the Jones polynomial is
invariant uner MII. Let β′ ∈ Brm+1 be obtained from β ∈ Brm by MII. Then
φ(β′) = qφ̄(β)Un + q−1φ̄(β) where the bar denotes the map TLn → TLn+1

given by adding a strand to the right. The closure of the φ̄(β)Un is the same
as the closure of φ(β) while the closure of φ̄(β) is the closure of φ(β) union a
circle. So trφ(β′) = qtrφ(β) + q−1τtrφ(β) = (q − q−3 − q)trφ(β). We see that
if a link L′ is obtained from L by RIII then

< L′ >= q−3 < L > . (2.11)



34 CHAPTER 2. INVARIANTS OF LINKS

Since β′ has one more positive crossing than β does, its writhe is one more than
that of β and so the extra q−3 factor is canceled by −w(L) factor in the definition
of the Jones polynomial.

Example 2.8.5. Computation for trefoil and Hopf.

Let L = L+ be a link diagram and consider a specific positive crossing in
D. Let L0 be the result of replacing the crossing with two vertical lines and L1

the result of replacing it with a cup-cap pair as in Figure 2.8. Note that if you
rotate this picture 90 degrees then the 0 and 1 resolutions are exchanged.

Proposition 2.8.6 (Skein relation for Kauffman bracket). The Kauffman bracket
satisfies the following relations and is uniquely determined by them.

< L+ >= q < L0 > +q−1 < L1 > (2.12)

and <© >= 1.

Proof. If the diagram is in braid position then this follows immediately from
the definition of the homomorphism φ.

Figure 2.5: From right to left: L+, L0, L1

Proposition 2.8.7 (Skein relations for the Jones polynomial).

JL+ = t1/2JL0 + tJL1 (2.13)

JL− = t−1JL1 + t−1/2JL0 (2.14)

t−1JL+
− tJL− = (t−1/2 − t1/2)JL0

(2.15)

Proof. For the first equation use the definition of the Jones polynomial and the
Kauffman skein relation (compute in terms of q and then substitute with t).
Proof of the second one is similar with the difference that the 0-resolution for
L+ is the same as the the 1-resolution for L−.

For the last equation, expand and simplify q4 < L+ > −q−4 < L− > using
the Kauffman relation. Note that the writhe of L+ is 2 more than that of

Exercise 2.8.8. Show that JL(1) = 2l where L is the number of components of
L.
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2.9 State sum model for the Jones polynomial

Imagine we have a link diagram D with n crossings. We can apply the Kauffman
skein relation to each and every crossing in D. Each crossing has two different
resolutions so we end up with 2n “states” each one of which is a “full resolution”
of D. In a full resolution every crossing in D is resolved and so it is a disjoint
union of embedded circles in the plane. We can dnote each state by an element
I ∈ {0, 1}n. Each such I contributes a term to the Kauffman bracket. The
coefficient for the resolution I from the Kauffman bracket is q1(I)−0(I) and we are
left with some s(I) circles in the plane. So the term is q0(I)−1(I)(−q2−q−2)s(I)−1.
From this we get

< L >=
∑

I∈{0,1}n
q0(I)−1(I)(−q2 − q−2)s(I)−1 (2.16)

2.10 The Jones polynomial and the quantum sl2

If V is the fundamental representation of quantum sl2 then

Inv(V 2n) ⊂ V 2n(0)

.
Inv(V 2n) ∼= K(Hm − mod) (finitely generated modules) More precisely

The Grothemdieck group is generated as a Z[q, q−1]-module by [Z(a)] for m-
crossingless matchings a. What is the space of invariants for V 2m+1?

V n(n− 2k) ∼= K(Øn−k,k)⊗Z C. Øn,n−k ∼= An−k,k −mod finite dimensional
modules. An−k,k is the Braiden algebra. Ø = Ø(g) consists of finitely generated
g-modules M for which

• The action of h on M is diagonalizable.

• dimU(n+)v <∞ for all v ∈M .

Hn ⊗Z C ∼= eAn,ne for some idempotent e. Stroppel’s Kn ∼= An,n.
Chen-Khovanov define, in a down to earth way, graded ringsAn−k,k. K(An−k,k−

mod)⊗ C ∼= V n. An =
∏
k A

n−k,k. They assign to an (m,n)-tangle a complex
of graded (Am, An)-bimodules. Stroppel’s Kn ∼= An,n ⊗ C.

2.11 Skein modules

Let’s consider the Z[z, v, z−1, v−1] module S generated by the equivalence classes
of oriented links modulo the relation

vL+ + v−1L− = zL0.

Theorem 2.11.1. S is generated is a free module with a basis given by the
unknot. Therefore the equivalence class of each link type L is a polynomial in
z, v, z−1, v−1 times the unknot and this polynomial is an invariant of the link
which is the same as.
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the statement and proof for tangles
what is the inv for tangles and how is it related to other tangle poly’s?

2.12 [UNFINISHED] Jones invariant of tangles
by capping

In this section we want to extent the Jones polynomial to tangles in the most
conceptually simple manner. To this end we cap the tangle with crossingless
matchings.

Whenever we have an invariant Ψ of links and we want to generalize it to
an invariant Ψ̃ of tangles, Ψ̃ must satisfy two conditions

i. Ψ̃(L) = Ψ(L) for any link L.

ii. Functoriality: Ψ̃(T2 ◦ T1) = Ψ̃(T2) ◦ Ψ̃(T1).

Definition 2.12.1. A crossingless matching with n endpoints is a (n, 0)-tangle
which doesn’t have any crossings.

The number of isotopy classes of crossingless matchings with n endpoints
equals the Catalan number Cn.

Let T be a general tangle. For the simplicity of presentation and because
RNA molecules are represented by tangles with no outgoing points, we restrict
our attention to the case that T is an (n, 0) tangle.

What the Jones polynomial assigns to a link, which is a (0, 0)-tangle, is an
element of the base field of the Temperley-Lieb algebra. This base field can
be regarded as TL0. Similarly what we assign to a (n, 0) tangle will be a map
TLn → TL0.

Note that any crossingless matching D with n endpoints gives a map φD :
TLn → TL0 which is given by capping a basis element X of TLn (which is a flat
(n, n)-tangle) on both sides by D and counting the number of resulting circles.
More precisely

φD(X) = τ (#D
tXD)−1 (2.17)

where # denotes the number of components.

Definition 2.12.2. The Jones invariant of a (n, 0)-tangles T is an element of
Hom(TLn, TL0) given by ∑

D

J(DtT ) · φD (2.18)

where the sum is over all the Cn isotopy classes of crossingless matchings.
It is evident that if n = 0 and so T is a link then the above definition gives the
original Jones polynomial.

We next consider functoriality. Let E be a (0, n)-tangle a definition similar
to the above gives an invariant J(E) : TL0 → TLn. We have to check that
J(D) ◦ J(E)(1) is the Jones polynomial of the link DE. This is equivalent to
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Proposition 2.12.3. The automorphism
∑
D,E φE◦φD of TLn equals the iden-

tity map.

2.13 The Jones and Alexander polynomials from
R-matrices

Let V be a two dimensional vector space over C with a basis e1, e2. We can
define a representation of the symmetric group Sn on V ⊗n which sends the
transposition si ∈ Sn to the linear map that exchanges the ith and i+1th factors
in V ⊗n. More precisely let P : V ⊗ V → V ⊗ V be the map P (

∑
i xi ⊗ yi) =∑

yi ⊗ xi and define a homomorphism φ : Sn → End(V ⊗n) by

φ(si) = id⊗i−1 ⊗ P ⊗ id⊗n−i−1. (2.19)

We can compose φ with the homomorphism Brn → Sn to get a representa-
tion of the braid group. But we want a representation which doesn’t necessarily
factor through a representation of the symmetric group. To this end we consider
an arbitrary linear map R : V ⊗V → V ⊗V and ask ourselves for which R does
the map

ψ(σi) = id⊗i−1 ⊗R⊗ id⊗n−i−1 (2.20)

give a representation of the braid group Brn on V ⊗n.
It is easy to see that for any R such a ψ satisfies the relation ψ(σiσj) =

ψ(σjσi) for |i− j| > 1. For ψ to satisfy the braid relation, R has to satisfy the
following equation

(R⊗ id)(id⊗R)(R⊗ id) = (id⊗R)(R⊗ id)(id⊗R) (2.21)

which is called the Yang-Baxter equation. A solution to this equation is called
an R-matrix.

Definition 2.13.1. We say that an R-matrix satisfies charge conservation if
the ek⊗el coefficient in the expansion of R(ei⊗ej) is nonzero then i+j = k+ l.
Such an R-matrix has the following form in the standard basis of V ⊗ V .

a 0 0 0
0 b c 0
0 d e 0
0 0 0 f

 (2.22)

Proposition 2.13.2. An R-matrix which satisfies charge preservation has one
of the following two forms:
b = 0, e = a− cd/a, f = a
b = 0, e = a− cd/a, f = −cd/a

We set c = d = a2 = t. If a link is given by the closure of a braid β ∈ Brn
we want to be able to get an invariant of L from trψ(β). Markov move I is
satisfied because trace is invariant under conjugation of matrices.
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We instead consider
tr(hnψ(β)) (2.23)

where h = diag(t−1/2, t1/2) ∈ End(V ).

Theorem 2.13.3. The assignment β → tr(hnψ(β)) is invariant under Markov
moves so it gives a link invariant (for the closure of β). This invariant equals
t1/2 + t−1/2 times the Jones polynomial.

Proof. Only equivalence to the Jones polynomial has not been proved. To this
end we show that our invariant satisfies the Kaufman skein relation.

2.14 Tangle invariants from R-matrices

If we define Jones by capping with crossingless matchings we get a linear com-
bination of these crossingless matchings which can be regaded as a map from
TLn → C[q, q−1] or from V 2n to C[q, q−1]. How to prove functoriality?

Let V be a vector space over C. To an oriented (m,n)-tangle T . The lower
end of T consists of m points each one of them having a sign si which is positive
if the strand of T at the point is pointing downwards and negative otherwise.
We have a similar vector of signs s′1, . . . , s

′
n fr the upper end. We set V si to be

V if si is positive and V ∗ otherwise.
We want to assign a linear map

ψ(T ) = V s1 ⊗ · · · ⊗ V sm → V s
′
1 ⊗ · · · ⊗ V s

′
n . (2.24)

We will do this by decomposing T into a composition of elementary tangle and
assigning linear maps to each elementary tangle.

Let ∩i denote a cap tangle with counterlocwise orientation and −∩i the same
tangle with clockwise orientation. Similarly for ∪i and −∪i.

We start from arbitrary linear maps R ∈ End(V ⊗ V ), h ∈ End(V ). Let the
maps u : C → V ∗ ⊗ V , u′ : C → V ⊗ V ∗, ε : V ⊗ V ∗ → C, ε′ : V ∗ ⊗ V → C be
given by:
u(1) =

∑
e∗i ⊗ h(ei),

u′(1) =
∑
ei ⊗ e∗i ,

ε(v, f) = f(h(v)),
ε′(f, v) = f(v).

We set
ψ(σi) = id⊗i−1 ⊗R⊗ id⊗n−i−1.
ψ(σ−1i ) = id⊗i−1 ⊗R−1 ⊗ id⊗n−i−1.
ψ(∪i) = id⊗i−1 ⊗ u′ ⊗ id⊗n−i−1
ψ(−∪i) = id⊗i−1 ⊗ u⊗ id⊗n−i−1
ψ(∩i) = id⊗i−1 ⊗ ε⊗ id⊗n−i−1
ψ(−∩i) = id⊗i−1 ⊗ ε′ ⊗ id⊗n−i−1
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For a linear map A ∈ End(V1 ⊗ V2) = V ∗1 ⊗ V1 ⊗ V ∗2 ⊗ V2 let
A1 ∈ Hom(V ∗1 ⊗ V1, V2 ⊗ V ∗2 )
A2 ∈ Hom(V2 ⊗ V ∗2 , V ∗1 ⊗ V1)

Theorem 2.14.1 (Turaev). If R satisfies the Yang-Baxter equation and R, h
satisfy the following equations

R ◦ (h⊗ h) = (h⊗ h) ◦R (2.25)

tr2(idV ⊗ h) ◦R±1 = idV (2.26)

R−11 ◦ ((idV ⊗ h) ◦R ◦ (h−1)⊗ idV )2 = idv ⊗ idV . (2.27)

then ψ is a tangle invariant. Moreover the R, h from the last section sat-
isfy these equation and the invariant they give to a (0, 0)-tangle is its Jones
polynomial.

For an (n, 0)-tangle T such as one associated to an RNA molecule we get a
linear map V ⊗n → C. We can write this map as inner product with a unique
element v of V ⊗n so we can regard v as the invariant associated to T .

2.15 From links to graphs and back

To any link diagram one can associate a weighted edge graph embedded in the
plane called the Tait graph and vice versa.

Starting from a link diagram, we first need a checkerboard coloring of the
diagram. This means that we color the faces ( connected components of the
complement) of the link projection with black and white in such a way that
adjacent components have different colors.

To obtain the Tait graph we associate a vertex to each black component and
an edge to each crossing. The edges are marked with + or − depending whether
the crossing is right or left handed. If we use the white regions instead we get
the dual graph.

Associating links to signed graphs

To any planar signed graph G we can associate a link diagram as follows. We
first take the medial graph Gm of G. Gm has a 4-valent vertex in the middle of
each edge of G. The edges are the drawn by following the face boundaries of G.

Proposition 2.15.1. • D(T (D)) = D

• T (D(G)) ∈ {G,G∗}

• D(G) = D(G∗)
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Associating fatgraphs to link diagrams

Let D be a link diagram with c crossings and let Iin{0, 1}n. As we know each
such I gives us a complete resolution of the diagram into a set of disjoint closed
curves in the plane. We can associate a fatgraph G(D, I) to such a resolution
as follows. To each connected component of the complement of the set of circles
we assign a vertex. In place of each crossing we put an edge between the
corresponding vertices. The vertices emanating from any vertex have a natural
cyclic order that comes from the orientation of the plane.

There are 2c different such fatgraphs. We note that both a Seifert surface
and the Tait graph of D are among these fatgraphs. Namely if D is a diagram of
an oriented link then we can choose I to be so that each crossing is resolved in
a way which is compatible with the orientation. The surface associated G(D, I)
is the same as the one obtained from the Seifert algorithm.

2.16 Homfly polynomial

Homfly is a two variable invariant which includes both Alex and Jones. It is the
most general poly inv which satisfies the skein relation.

Theorem 2.16.1. There is a unique invariant of oriented links P taking values
in the ring of Laurent polynomials in three variables such that P (©) = 1 and P
satisfies the skein relation

xP (L+) + yP (L−) + zP (L0) = 0. (2.28)

2.17 Tutte polynomial and HOMFLY polyno-
mial

2.18 Beyond the skein relation: Finite type in-
variants
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