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High-dimensional data

Data can be very high dimensional. Examples include:

Digital images have as many as height × width × c features where c
is the number of color channels (usually 3 for color images and 1 for
monochrome).

Time series {zt}Nt=1.

Vector representations of words and documents (typically have
hundreds of dimensions).

Problems with high dimensional data:

Difficult (if not impossible) to visualize.

Increased number of features can dramatically increase the
computational cost of ML algorithms.

Notions of Euclidean distance and orthogonolity differ significantly in
higher dimensions.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning December 14, 2022 2 / 9



High-dimensional data

Data can be very high dimensional. Examples include:

Digital images have as many as height × width × c features where c
is the number of color channels (usually 3 for color images and 1 for
monochrome).

Time series {zt}Nt=1.

Vector representations of words and documents (typically have
hundreds of dimensions).

Problems with high dimensional data:

Difficult (if not impossible) to visualize.

Increased number of features can dramatically increase the
computational cost of ML algorithms.

Notions of Euclidean distance and orthogonolity differ significantly in
higher dimensions.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning December 14, 2022 2 / 9



High-dimensional data

Data can be very high dimensional. Examples include:

Digital images have as many as height × width × c features where c
is the number of color channels (usually 3 for color images and 1 for
monochrome).

Time series {zt}Nt=1.

Vector representations of words and documents (typically have
hundreds of dimensions).

Problems with high dimensional data:

Difficult (if not impossible) to visualize.

Increased number of features can dramatically increase the
computational cost of ML algorithms.

Notions of Euclidean distance and orthogonolity differ significantly in
higher dimensions.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning December 14, 2022 2 / 9



High-dimensional data

Data can be very high dimensional. Examples include:

Digital images have as many as height × width × c features where c
is the number of color channels (usually 3 for color images and 1 for
monochrome).

Time series {zt}Nt=1.

Vector representations of words and documents (typically have
hundreds of dimensions).

Problems with high dimensional data:

Difficult (if not impossible) to visualize.

Increased number of features can dramatically increase the
computational cost of ML algorithms.

Notions of Euclidean distance and orthogonolity differ significantly in
higher dimensions.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning December 14, 2022 2 / 9



High-dimensional data

Data can be very high dimensional. Examples include:

Digital images have as many as height × width × c features where c
is the number of color channels (usually 3 for color images and 1 for
monochrome).

Time series {zt}Nt=1.

Vector representations of words and documents (typically have
hundreds of dimensions).

Problems with high dimensional data:

Difficult (if not impossible) to visualize.

Increased number of features can dramatically increase the
computational cost of ML algorithms.

Notions of Euclidean distance and orthogonolity differ significantly in
higher dimensions.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning December 14, 2022 2 / 9



High-dimensional data

Data can be very high dimensional. Examples include:

Digital images have as many as height × width × c features where c
is the number of color channels (usually 3 for color images and 1 for
monochrome).

Time series {zt}Nt=1.

Vector representations of words and documents (typically have
hundreds of dimensions).

Problems with high dimensional data:

Difficult (if not impossible) to visualize.

Increased number of features can dramatically increase the
computational cost of ML algorithms.

Notions of Euclidean distance and orthogonolity differ significantly in
higher dimensions.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning December 14, 2022 2 / 9



High-dimensional data

Data can be very high dimensional. Examples include:

Digital images have as many as height × width × c features where c
is the number of color channels (usually 3 for color images and 1 for
monochrome).

Time series {zt}Nt=1.

Vector representations of words and documents (typically have
hundreds of dimensions).

Problems with high dimensional data:

Difficult (if not impossible) to visualize.

Increased number of features can dramatically increase the
computational cost of ML algorithms.

Notions of Euclidean distance and orthogonolity differ significantly in
higher dimensions.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning December 14, 2022 2 / 9



High-dimensional data cont.

More precisely we have:

Theorem: In d-dimensional Euclidean space, if we randomly pick n points
x1, x2, . . . , xn from the unit ball ||x|| ≤ 1 then with probability 1−O(1/n)
we have:

||xi || ≥ 1− 2 log n
d ,

|〈xi , xj〉| ≤
√

6 log n
d−1 or i 6= j .

In words this means that in high dimensions, random points drawn from
the unit ball lie close to its boundary (have length near 1), and they are
nearly orthogonal to each other.
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Dimensionality reduction

Dimensionality reduction means mapping data from a high
dimensional space RD to a low dimensional space Rd in such a way
the minimizes the information loss (e.g. variance loss).

Note: High dimensional features are often highly correlated. For
example pixel values are correlated with their neighbor pixels. Or
future time series values correlated with their current values.
Dimensionality reduction removes these extraneous features and can
be either linear or nonlinear.
Nonlinear dimensionality reduction is also called Manifold Learning.
A manifold is a generalization of smooth shapes, such as sphere,
torus, etc. to higher dimensions.
The assumption in manifold learning is that our data lies on a
submanifold of Rd with a high codimension. For example natural
images or images of handwritten digits form a very small subset of all
images.
Nonlinear methods can detects nonlinear transformations of features
as well, e.g. nonlinear mappings of pictures.
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Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction method.

For a dataset
D ⊂ RD , it finds an orthonormal basis v1, v2, . . . , vD of RD such that
the variance of D along the coordinates v1, . . . , vi , . . . , vD is
monotonically decreasing in i .

By the variance of a dataset D along a basis vector vi , we mean the
variance of the vi coordinate of the dataset i.e. {〈x, vi 〉|x ∈ D}.
After applying the PCA transformation T , we can keep only the first
2 or 3 coordinates of the data, for visualization. We know that the
variance of our data is highest along these coordinates.

Alternatively we can keep as many coordinates v1, v2, . . . , vd , (with
d < D) that contain most (e.g. 95%) of the variance of the data and
discard the rest.

We can think of PCA as a linear transformation T : RD → RD that
sends the standard basis vectors {ei}Di=1 to {vi}Di=1.
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The math of PCA

Remember that the covariance of two random variables X ,Y is
defined as

cov(X ,Y ) = E [(X − E (X ))(Y − E (Y ))] (1)

In PCA we assume that data is centered around the origin and thus
the expectation values of its coordinates are zero.

If D = {xi}ni=1 ⊂ RD is a dataset and Fi is the n-dimensional vector
whose components are the i ’th component (feature) of datapoints,
then the covariance matrix of D is the matrix C such that
Ci ,j = 〈Fi ,Fj〉/(n − 1).

In other words, if X is the n × D matrix whose rows are the xi then
C = X tX

n−1 .

C is symmetric and therefore it is diagonalizable i.e. C = VLV t where
L = diag(λ1, λ2, . . . , λD).

We can sort the eigenvectors so that λ1 ≥ λ2 ≥ · · · ≥ λD .
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The math of PCA cont.

The columns v1, v2, . . . , vD of V are the eigenvectors of C and are
called principal directions of data.

The projections of the data into these directions are called the
principal components of the data i.e.

x =
D∑
i=1

xiei =
D∑
i=1

x ′i vi . (2)

The PCA trandformation is given by T (x1, . . . , xD) = (x ′1, . . . , x
′
D).

The principal directions can be obtained from the Singular Value
Decomposition of X as well: X = USV t .

We can see that C = V S2

n−1V
t .
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Inverse map for PCA

Once we apply PCA and choose a number d < D of the coordinates
to keep, we can map the dimensionaly reduced data

x̄ =
d∑

i=1

x ′i vi (3)

back using the inverse T−1.

We can use the error
∑

i ||xi − T−1x̄i ||2 to choose the value of d .

Note: not all dimensionality reduction methods have an inverse map!
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Kernel PCA

Kernel PCA is a nonlinear dimensionality reduction method.

Remember that in the kernel method for SVM, we had a mapping
Φ : Rd → RD and a kernel function K (x, y) such that
K (x, y) = 〈Φ(x),Φ(y)〉.
In Kernel PCA, we compute the variance matrix in the target space of
Φ; however the mapping Φ is not used explicitly.

In other words we have Ci ,j = K (Fi ,Fj) (where are the feature
vectors of the dataset) and we diagonalize this matrix.
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