Chapter 5: Decision Tree Learning

Reza Rezazadegan

Sharif University of Technology

Fall 2022

Reza Rezazadegan (Sharif University) [Introduction to Machine Learning](#page-72-0) November 23, 2022 1/16

←□

• In Decision Tree Learning, a decision tree is learned which gives a classification of our dataset $D = \{(\mathsf{x}_i, y_i)\}.$

• In Decision Tree Learning, a decision tree is learned which gives a classification of our dataset $D = \{(\mathsf{x}_i, y_i)\}$. As usual $\mathbf{x} = (x_1, x_2, \dots, x_d)$ are the features of the data.

- In Decision Tree Learning, a decision tree is learned which gives a classification of our dataset $D = \{(\mathsf{x}_i, y_i)\}$. As usual $\mathbf{x} = (x_1, x_2, \dots, x_d)$ are the features of the data.
- At the root of the tree is the whole training dataset . At each other node v we have a subset $S_v \subset D$.

 200

- In Decision Tree Learning, a decision tree is learned which gives a classification of our dataset $D = \{(\mathsf{x}_i, y_i)\}$. As usual $\mathbf{x} = (x_1, x_2, \dots, x_d)$ are the features of the data.
- At the root of the tree is the whole training dataset . At each other node v we have a subset $S_v \subset D$.
- Each edge represents a "decision" or "rule" on the value of a feature e.g. " $x_k > 0.24$ ".

 200

- In Decision Tree Learning, a decision tree is learned which gives a classification of our dataset $D = \{(\mathsf{x}_i, y_i)\}$. As usual $\mathbf{x} = (x_1, x_2, \dots, x_d)$ are the features of the data.
- At the root of the tree is the whole training dataset . At each other node v we have a subset $S_v \subset D$.
- Each edge represents a "decision" or "rule" on the value of a feature e.g. " $x_k > 0.24$ ".
- If $u \rightarrow v$ is an edge (i.e. u is the parent of v) with a decision such as $x_k < c$ then $S_v = \{ \mathbf{x} \in S_u : x_k < c \}.$

- In Decision Tree Learning, a decision tree is learned which gives a classification of our dataset $D = \{(\mathsf{x}_i, y_i)\}$. As usual $\mathbf{x} = (x_1, x_2, \dots, x_d)$ are the features of the data.
- At the root of the tree is the whole training dataset . At each other node v we have a subset $S_v \subset D$.
- Each edge represents a "decision" or "rule" on the value of a feature e.g. " $x_k > 0.24$ ".
- If $u \rightarrow v$ is an edge (i.e. u is the parent of v) with a decision such as $x_k < c$ then $S_v = \{ \mathbf{x} \in S_u : x_k < c \}.$
- Decision Tree Learning algorithms such as ID3 or CART use a measure of impurity (such as entropy or Gini impurity) and at each node, try to find a feature-condition pair that reduces impurity most.
- Such algorithms try to find a tree whose leaves S_{ν} are pure, i.e. contain only one class.

イロト イ押ト イヨト イヨ

Example of a Decision Tree

Figure: A decision tree for the iris dataset depicted using dtreeviz library.

 \leftarrow \Box

 299

• Remember that the **Shannon Entropy** of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.

4 **D F**

 299

- Remember that the **Shannon Entropy** of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.
- Idea: when $p(x)$ is close to 1 then the surprise of the event x is low; if its close to 0 then the surprise is high.

- Remember that the **Shannon Entropy** of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.
- Idea: when $p(x)$ is close to 1 then the surprise of the event x is low; if its close to 0 then the surprise is high. $-\log(p(x)) = \log(1/p(x))$.

- Remember that the **Shannon Entropy** of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.
- Idea: when $p(x)$ is close to 1 then the surprise of the event x is low; if its close to 0 then the surprise is high. $-\log(p(x)) = \log(1/p(x))$.
- $H(P) = 0$ if and only if $p(x_0) = 1$ for some x_0 .

- Remember that the Shannon Entropy of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.
- If Idea: when $p(x)$ is close to 1 then the surprise of the event x is low; if its close to 0 then the surprise is high. $-\log(p(x)) = \log(1/p(x))$.
- $H(P) = 0$ if and only if $p(x_0) = 1$ for some x_0 .
- Theorem: Among distributions on the same sample space, maximum entropy belongs to the uniform distribution.

- Remember that the Shannon Entropy of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.
- **I** dea: when $p(x)$ is close to 1 then the surprise of the event x is low; if its close to 0 then the surprise is high. $-\log(p(x)) = \log(1/p(x))$.
- $H(P) = 0$ if and only if $p(x_0) = 1$ for some x_0 .
- Theorem: Among distributions on the same sample space, maximum entropy belongs to the uniform distribution.
- Thus entropy is a measure of uncertainty of a probability distribution or random variable.

 QQ

- • Remember that the **Shannon Entropy** of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.
- **I** dea: when $p(x)$ is close to 1 then the surprise of the event x is low; if its close to 0 then the surprise is high. $-\log(p(x)) = \log(1/p(x))$.
- $H(P) = 0$ if and only if $p(x_0) = 1$ for some x_0 .
- Theorem: Among distributions on the same sample space, maximum entropy belongs to the uniform distribution.
- Thus entropy is a measure of uncertainty of a probability distribution or random variable.
- Shannon's source coding theorem: a random variable X with probability distribution p can not be compressed into more than $H(p)$ bits of information.

- • Remember that the **Shannon Entropy** of a probability distribution p is given by $H(p) = -E[\log_2 p] = -\sum p(x) \log_2 p(x)$.
- Idea: when $p(x)$ is close to 1 then the surprise of the event x is low; if its close to 0 then the surprise is high. $-\log(p(x)) = \log(1/p(x))$.
- $H(P) = 0$ if and only if $p(x_0) = 1$ for some x_0 .
- Theorem: Among distributions on the same sample space, maximum entropy belongs to the uniform distribution.
- Thus entropy is a measure of uncertainty of a probability distribution or random variable.
- Shannon's source coding theorem: a random variable X with probability distribution p can not be compressed into more than $H(p)$ bits of information.
- \bullet In case we have a set S containing elements belonging to m different classes, and $p(k)$ is the probability of belonging to class k then $H(p)$ is a measure [of](#page-14-0) "m[i](#page-16-0)xed[n](#page-7-0)[e](#page-15-0)ss" (o[r](#page-16-0) impurity) [o](#page-72-0)f S in [t](#page-8-0)er[ms](#page-0-0) o[f c](#page-0-0)[la](#page-72-0)[sse](#page-0-0)[s.](#page-72-0) 2990

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

4 **D F**

De service э QQ

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

• If $p = 0$ or $p = 1$ then $H = 0$.

4 **D F**

э

 QQ

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

• If $p = 0$ or $p = 1$ then $H = 0.$ If $p = 1/2$ then $H = 1$.

4 **D F**

 200

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

• If $p = 0$ or $p = 1$ then $H = 0.$ If $p = 1/2$ then $H = 1$.

€⊡

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

If $p = 0$ or $p = 1$ then $H = 0.1$ $p = 1/2$ then $H = 1$.

A fair coin is more surprising than a biased coin!

 Ω

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

• If $p = 0$ or $p = 1$ then $H = 0.$ If $p = 1/2$ then $H = 1$.

- A fair coin is more surprising than a biased coin!
- We can interpret this probability distribution as coming from a mix of two classes $v = 0, v = 1$.

 Ω

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

• If $p = 0$ or $p = 1$ then $H = 0$. If $p = 1/2$ then $H = 1$.

- A fair coin is more surprising than a biased coin!
- We can interpret this probability distribution as coming from a mix of two classes $v = 0, v = 1$.
- More generally if S is a set of N elements, partitioned into classes $C_1, C_2, \ldots C_m$ then it gives us the probability distribution $p(C_k) = |C_k|/|S|$ and we can compute its entropy:

For example consider the Bernoulli distribution: $p(y = 1) = p$, $p(y = 0) = 1 - p$. Its entropy is given by $-p \log(p) - (1-p) \log(1-p)$.

• If $p = 0$ or $p = 1$ then $H = 0$. If $p = 1/2$ then $H = 1$.

- A fair coin is more surprising than a biased coin!
- We can interpret this probability distribution as coming from a mix of two classes $v = 0, v = 1$.
- More generally if S is a set of N elements, partitioned into classes $C_1, C_2, \ldots C_m$ then it gives us the probability distribution $p(C_k) = |C_k|/|S|$ and we can compute its entropy: $H(S) = \sum_i \frac{|C_i|}{N}$ $\frac{C_i|}{N}$ (log (N) – log $(|C_i|)$.

Reza Rezazadegan (Sharif University) and [Introduction to Machine Learning](#page-0-0) and November 23, 2022 15/16

 \bullet At each node v of a decision tree, we want to split S_v in such a way that the impurity (entropy in this case) of the children is much smaller than that of v.

- \bullet At each node v of a decision tree, we want to split S_v in such a way that the impurity (entropy in this case) of the children is much smaller than that of v.
- To this end, we use the **Information Gain (IG)** of parent and children.

 Ω

- \bullet At each node v of a decision tree, we want to split S_v in such a way that the impurity (entropy in this case) of the children is much smaller than that of v.
- **•** To this end, we use the Information Gain (IG) of parent and children. If u_1, u_2, \ldots, u_k are the children of v and we assign subsets $S_{u_i} \subset S_{v}$ to them which make a partition of S_{v} then

$$
IG(v, \{u_1, \ldots, u_k\}) = H(S_v) - \sum_i p(S_{u_i}) H(S_{u_i}). \hspace{1cm} (1)
$$

Here $p(S_{u_i}) = |S_{u_i}|/|S_{v}|$.

- \bullet At each node v of a decision tree, we want to split S_v in such a way that the impurity (entropy in this case) of the children is much smaller than that of v.
- **•** To this end, we use the Information Gain (IG) of parent and children. If u_1, u_2, \ldots, u_k are the children of v and we assign subsets $S_{u_i} \subset S_{v}$ to them which make a partition of S_{v} then

$$
IG(v, \{u_1, \ldots, u_k\}) = H(S_v) - \sum_i p(S_{u_i}) H(S_{u_i}). \hspace{1cm} (1)
$$

Here $p(S_{u_i}) = |S_{u_i}|/|S_{v}|$.

• Note that the base of logarithm is unimportant for computing IG, as long as it is the same throughout.

 Ω

- \bullet At each node v of a decision tree, we want to split S_v in such a way that the impurity (entropy in this case) of the children is much smaller than that of v.
- **•** To this end, we use the Information Gain (IG) of parent and children. If u_1, u_2, \ldots, u_k are the children of v and we assign subsets $S_{u_i} \subset S_{v}$ to them which make a partition of S_{v} then

$$
IG(v, \{u_1, \ldots, u_k\}) = H(S_v) - \sum_i p(S_{u_i}) H(S_{u_i}). \hspace{1cm} (1)
$$

Here $p(S_{u_i}) = |S_{u_i}|/|S_{v}|$.

- Note that the base of logarithm is unimportant for computing IG, as long as it is the same throughout.
- At each node v, the algorithm finds the feature x_i such that splitting S_v according to the valu[es](#page-29-0) of x_i gives the h[igh](#page-27-0)es[t](#page-23-0) [i](#page-24-0)[n](#page-28-0)[fo](#page-29-0)[rm](#page-0-0)[a](#page-72-0)[tio](#page-0-0)[n](#page-72-0) [ga](#page-0-0)[in.](#page-72-0) Ω

Reza Rezazadegan (Sharif University) [Introduction to Machine Learning](#page-0-0) November 23, 2022 6/16

Example of Information Gain

Figure: Compute the information gain for this splitting. Credit: Foster provost and Tom Fawcett

 \rightarrow \equiv \rightarrow

← ロ → → ← 何 →

Another example of Information Gain

Figure: Another splitting of the same set. Credit: Foster Provost and Tom Fawcett

4 0 F ∢母

For a discrete-valued feature x_{j} , the splitting is done according to its possible values $\{1, 2, \ldots k\}$

4 **D F**

э

For a discrete-valued feature x_{j} , the splitting is done according to its possible values $\{1, 2, \ldots k\}$ i.e. the children being $\{x \in S_v : x_i = 1\}$, ${x \in S_v : x_i = 2}$, etc.

 Ω

- For a discrete-valued feature x_{j} , the splitting is done according to its possible values $\{1, 2, \ldots k\}$ i.e. the children being $\{x \in S_v : x_i = 1\}$, ${x \in S_{\nu}: x_{i} = 2}$, etc.
- The original ID3 algorithm can only handle discrete values.

 Ω

- For a discrete-valued feature x_{j} , the splitting is done according to its possible values $\{1, 2, \ldots k\}$ i.e. the children being $\{x \in S_v : x_i = 1\}$, ${x \in S_{\nu}: x_{i} = 2}$, etc.
- The original ID3 algorithm can only handle discrete values. However the successor C4.5 Algorithm converts continuous features into discrete ones.
- For a discrete-valued feature x_{j} , the splitting is done according to its possible values $\{1, 2, \ldots k\}$ i.e. the children being $\{x \in S_v : x_i = 1\}$, ${x \in S_{\nu}: x_{i} = 2}$, etc.
- The original ID3 algorithm can only handle discrete values. However the successor C4.5 Algorithm converts continuous features into discrete ones.
- \bullet A continuous feature x_k can be discretized by dividing its range into intervals $[c_1, c_2), [c_2, c_3), \ldots, [c_{n-1}, c_n]$ and treating these intervals as discrete values.
- For a discrete-valued feature x_{j} , the splitting is done according to its possible values $\{1, 2, \ldots k\}$ i.e. the children being $\{x \in S_v : x_i = 1\}$, ${x \in S_{\nu}: x_{i} = 2}$, etc.
- The original ID3 algorithm can only handle discrete values. However the successor C4.5 Algorithm converts continuous features into discrete ones.
- \bullet A continuous feature x_k can be discretized by dividing its range into intervals $[c_1, c_2), [c_2, c_3), \ldots, [c_{n-1}, c_n]$ and treating these intervals as discrete values.
- This way, starting from the root, the algorithm grows the decision tree. A node is taken as a leaf if its set is pure or if the set cannot be split by features anymore, or if a preset maximum depth is reached.

After the decision tree is learned, for inference (prediction) for a new instance x, starting from the root, the tree is traversed to find the node to which x belongs.

After the decision tree is learned, for inference (prediction) for a new instance x, starting from the root, the tree is traversed to find the node to which x belongs. The most frequent class in the node is assigned to x.

- After the decision tree is learned, for inference (prediction) for a new instance x, starting from the root, the tree is traversed to find the node to which x belongs. The most frequent class in the node is assigned to x.
- ID3, C4.5 and CART algorithms are greedy algorithms that may not reach the global optimum.

- After the decision tree is learned, for inference (prediction) for a new instance x, starting from the root, the tree is traversed to find the node to which x belongs. The most frequent class in the node is assigned to x.
- ID3, C4.5 and CART algorithms are greedy algorithms that may not reach the global optimum.
- \bullet The global Decision Tree optimization problem for a dataset D takes place on the space of all trees T whose nodes v are labeled with subsets $S_v \subset D$.

- After the decision tree is learned, for inference (prediction) for a new instance x, starting from the root, the tree is traversed to find the node to which x belongs. The most frequent class in the node is assigned to x.
- ID3, C4.5 and CART algorithms are greedy algorithms that may not reach the global optimum.
- \bullet The global Decision Tree optimization problem for a dataset D takes place on the space of all trees T whose nodes v are labeled with subsets $S_v \subset D$. The loss (error) function for such a tree is defined as:

$$
L(\mathcal{T}) = \sum_{v \in \mathcal{T}} \frac{|S_v|}{|\mathcal{D}|} H(S_v).
$$
 (2)

- After the decision tree is learned, for inference (prediction) for a new instance x, starting from the root, the tree is traversed to find the node to which x belongs. The most frequent class in the node is assigned to x.
- ID3, C4.5 and CART algorithms are greedy algorithms that may not reach the global optimum.
- \bullet The global Decision Tree optimization problem for a dataset D takes place on the space of all trees T whose nodes v are labeled with subsets $S_v \subset D$. The loss (error) function for such a tree is defined as:

$$
L(\mathcal{T}) = \sum_{v \in \mathcal{T}} \frac{|S_v|}{|\mathcal{D}|} H(S_v).
$$
 (2)

• However finding the optimal tree w.r.t. L is NP-Complete and thus we use greedy algorithms to find a near-opt[im](#page-41-0)[um](#page-43-0)[.](#page-36-0)

Gini impurity is another measure of mixedness and is given by

$$
G(P) = 1 - \sum_{i} p_i^2. \tag{3}
$$

4 D F

 QQ

Gini impurity is another measure of mixedness and is given by

$$
G(P) = 1 - \sum_{i} p_i^2. \tag{3}
$$

Gini impurity is slightly faster to compute than entropy.

Gini impurity is another measure of mixedness and is given by

$$
G(P) = 1 - \sum_{i} p_i^2. \tag{3}
$$

- Gini impurity is slightly faster to compute than entropy.
- The CART (Classification and Regression Trees) algorithm is another decision tree learning algorithm that produces only binary trees.

 200

Gini impurity is another measure of mixedness and is given by

$$
G(P) = 1 - \sum_{i} p_i^2. \tag{3}
$$

- Gini impurity is slightly faster to compute than entropy.
- The CART (Classification and Regression Trees) algorithm is another decision tree learning algorithm that produces only binary trees.
- At each node $\mathsf{\nu}$, feature-threshold pairs $(\mathsf{x}_{j},\mathsf{c})$ are examined, and for each, two children are considered: $S_{u_1} = \{x \in S_v : x_i \leq c\}$ and $S_{\nu_2} = \{ \mathbf{x} \in S_{\nu} : x_i > c \}.$

 200

Gini impurity is another measure of mixedness and is given by

$$
G(P) = 1 - \sum_{i} p_i^2. \tag{3}
$$

- Gini impurity is slightly faster to compute than entropy.
- The CART (Classification and Regression Trees) algorithm is another decision tree learning algorithm that produces only binary trees.
- At each node $\mathsf{\nu}$, feature-threshold pairs $(\mathsf{x}_{j},\mathsf{c})$ are examined, and for each, two children are considered: $S_{u_1} = \{x \in S_v : x_i \leq c\}$ and $S_{\nu_2} = \{ \mathbf{x} \in S_{\nu} : x_i > c \}.$
- The pair that minimizes $\frac{|S_{u_1}|}{|S_{u_1}|}$ $\frac{|S_{u_1}|}{|S_{\nu}|}G(S_{u_1})+\frac{|S_{u_2}|}{|S_{\nu}|}$ $\frac{|\mathcal{S}_{u_2}|}{|\mathcal{S}_{\mathsf{v}}|}\mathsf{G}(\mathsf{S}_{u_2})$ is chosen to split the tree.

Gini impurity is another measure of mixedness and is given by

$$
G(P) = 1 - \sum_{i} p_i^2. \tag{3}
$$

- Gini impurity is slightly faster to compute than entropy.
- The CART (Classification and Regression Trees) algorithm is another decision tree learning algorithm that produces only binary trees.
- At each node $\mathsf{\nu}$, feature-threshold pairs $(\mathsf{x}_{j},\mathsf{c})$ are examined, and for each, two children are considered: $S_{u_1} = \{x \in S_v : x_i \leq c\}$ and $S_{\nu_2} = \{ \mathbf{x} \in S_{\nu} : x_i > c \}.$
- The pair that minimizes $\frac{|S_{u_1}|}{|S_{u_1}|}$ $\frac{|S_{u_1}|}{|S_{\nu}|}G(S_{u_1})+\frac{|S_{u_2}|}{|S_{\nu}|}$ $\frac{|\mathcal{S}_{u_2}|}{|\mathcal{S}_{\mathsf{v}}|}\mathsf{G}(\mathsf{S}_{u_2})$ is chosen to split the tree.
- In Scikit-Learn, decision tree classifier is provided by the class tree.DecisionTreeClassifier and uses the CART algorithm and currently does not support categorical featu[re](#page-47-0)s[.](#page-49-0) QQ

Reza Rezazadegan (Sharif University) [Introduction to Machine Learning](#page-0-0) November 23, 2022 11/16

DT learning algorithms can produce complicated decision trees for larger datasets, specially if there are many features.

- DT learning algorithms can produce complicated decision trees for larger datasets, specially if there are many features.
- This is because DTL is a *nonparametric model* which does not make any assumptions on the distribution of data.

- DT learning algorithms can produce complicated decision trees for larger datasets, specially if there are many features.
- This is because DTL is a *nonparametric model* which does not make any assumptions on the distribution of data. Thus it has more degrees of freedom than a parametric model such as Naive Bayes or Linear Regression.

- DT learning algorithms can produce complicated decision trees for larger datasets, specially if there are many features.
- This is because DTL is a *nonparametric model* which does not make any assumptions on the distribution of data. Thus it has more degrees of freedom than a parametric model such as Naive Bayes or Linear Regression.
- A parametric model is fully determined by its parameters e.g. mean and standard deviation in Gaussian Naive Bayes.

- DT learning algorithms can produce complicated decision trees for larger datasets, specially if there are many features.
- This is because DTL is a *nonparametric model* which does not make any assumptions on the distribution of data. Thus it has more degrees of freedom than a parametric model such as Naive Bayes or Linear Regression.
- A parametric model is fully determined by its parameters e.g. mean and standard deviation in Gaussian Naive Bayes.
- To restrict the freedom of DTL, we can use a few parameters in DecisionTreeClassifier such as:
	- max depth: maximum depth of the tree (maximum number of edges between the root and leaves).

 QQ

- DT learning algorithms can produce complicated decision trees for larger datasets, specially if there are many features.
- This is because DTL is a *nonparametric model* which does not make any assumptions on the distribution of data. Thus it has more degrees of freedom than a parametric model such as Naive Bayes or Linear Regression.
- A parametric model is fully determined by its parameters e.g. mean and standard deviation in Gaussian Naive Bayes.
- To restrict the freedom of DTL, we can use a few parameters in DecisionTreeClassifier such as:
	- max depth: maximum depth of the tree (maximum number of edges between the root and leaves).
	- min samples leaf: the minimum number of samples a leaf is allowed to have.

- DT learning algorithms can produce complicated decision trees for larger datasets, specially if there are many features.
- This is because DTL is a *nonparametric model* which does not make any assumptions on the distribution of data. Thus it has more degrees of freedom than a parametric model such as Naive Bayes or Linear Regression.
- A parametric model is fully determined by its parameters e.g. mean and standard deviation in Gaussian Naive Bayes.
- To restrict the freedom of DTL, we can use a few parameters in DecisionTreeClassifier such as:
	- max depth: maximum depth of the tree (maximum number of edges between the root and leaves).
	- min samples leaf: the minimum number of samples a leaf is allowed to have.
	- min_samples_split: minimum number of samples a node must have to be allowed to split. QQ **← ロ → → ← 何 →**

Reza Rezazadegan (Sharif University) [Introduction to Machine Learning](#page-0-0) November 23, 2022 12/16

Figure: An example of Decision Tree Learning with and without regularization. Credit: Aurelien Geron

4 0 8

Figure: An example of Decision Tree Learning with and without regularization. Credit: Aurelien Geron

• In Scikit, decision boundaries for a classifier can be drawn using the [inspection.DecisionBoundaryDisplay.from](https://scikit-learn.org/stable/modules/generated/sklearn.inspection.DecisionBoundaryDisplay.html#sklearn.inspection.DecisionBoundaryDisplay.from_estimator) estimator function.

• The CART algorithm can be used for regression as well.

4 D F

Þ

 QQ

The CART algorithm can be used for regression as well. For a continuous target variable y, the predicted value \hat{y} of each node of the tree is the average of the y of its datapoints.

- The CART algorithm can be used for regression as well. For a continuous target variable y, the predicted value \hat{y} of each node of the tree is the average of the y of its datapoints.
- The measure of impurity is now, the Means Square Error between the predicted and actual values of elements:

$$
G(S_v) = \frac{1}{|S_v|} \sum_{(\mathbf{x}_i, y_i) \in S_v} (y_i - \hat{y}_i)^2.
$$
 (4)

 200

- The CART algorithm can be used for regression as well. For a continuous target variable y, the predicted value \hat{y} of each node of the tree is the average of the y of its datapoints.
- The measure of impurity is now, the Means Square Error between the predicted and actual values of elements:

$$
G(S_v) = \frac{1}{|S_v|} \sum_{(\mathbf{x}_i, y_i) \in S_v} (y_i - \hat{y}_i)^2.
$$
 (4)

• Similar to the case of classification, the CART algorithm tries to split each node in such a way that minimizes this impurity.

- The CART algorithm can be used for regression as well. For a continuous target variable y, the predicted value \hat{y} of each node of the tree is the average of the y of its datapoints.
- The measure of impurity is now, the Means Square Error between the predicted and actual values of elements:

$$
G(S_v) = \frac{1}{|S_v|} \sum_{(\mathbf{x}_i, y_i) \in S_v} (y_i - \hat{y}_i)^2.
$$
 (4)

- Similar to the case of classification, the CART algorithm tries to split each node in such a way that minimizes this impurity.
- In Scikit, decision tree regression is provided by tree.DecisionTreeRegressor.

Figure: An example of Decision Tree Regression on sinusoidal data. We have only one feature which is plotted on the x-axis.

€⊡

• Decision Trees are highly explainable.

Reza Rezazadegan (Sharif University) [Introduction to Machine Learning](#page-0-0) November 23, 2022 16/16

4 D F

э

 QQ

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.

4 **D**

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.
- DTL does not make any assumptions on the distribution of data and does not need data normalization.

 200

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.
- DTL does not make any assumptions on the distribution of data and does not need data normalization.
- Assuming the tree is binary and fairly balanced, the prediction complexity is log $_2(\mathit{n})$, equal to the average length of a path from the root to a leaf.

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.
- DTL does not make any assumptions on the distribution of data and does not need data normalization.
- Assuming the tree is binary and fairly balanced, the prediction complexity is log $_2(\mathit{n})$, equal to the average length of a path from the root to a leaf.
- Computational complexity of training a decision tree on data with n samples and d features is $O(d \cdot n \cdot \log_2(n))$, because at each node we have to consider all the features.

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.
- DTL does not make any assumptions on the distribution of data and does not need data normalization.
- Assuming the tree is binary and fairly balanced, the prediction complexity is log $_2(\mathit{n})$, equal to the average length of a path from the root to a leaf.
- Computational complexity of training a decision tree on data with n samples and d features is $O(d \cdot n \cdot \log_2(n))$, because at each node we have to consider all the features.
- Decision Trees are very sensitive small changes in the data.

 QQ

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.
- DTL does not make any assumptions on the distribution of data and does not need data normalization.
- Assuming the tree is binary and fairly balanced, the prediction complexity is log $_2(\mathit{n})$, equal to the average length of a path from the root to a leaf.
- Computational complexity of training a decision tree on data with n samples and d features is $O(d \cdot n \cdot \log_2(n))$, because at each node we have to consider all the features.
- Decision Trees are very sensitive small changes in the data.
- They are also sensitive to rotating the data.

 QQ

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.
- DTL does not make any assumptions on the distribution of data and does not need data normalization.
- Assuming the tree is binary and fairly balanced, the prediction complexity is log $_2(\mathit{n})$, equal to the average length of a path from the root to a leaf.
- Computational complexity of training a decision tree on data with n samples and d features is $O(d \cdot n \cdot \log_2(n))$, because at each node we have to consider all the features.
- Decision Trees are very sensitive small changes in the data.
- They are also sensitive to rotating the data. This is because DTs only use vertical decision boundaries such as $x_i = c$; they doesn't use combinations of features.
Pros and Cons of Decision Tree Learning (DTL)

- Decision Trees are highly explainable.
- Decision Trees work natively as multi-class classifiers.
- DTL does not make any assumptions on the distribution of data and does not need data normalization.
- Assuming the tree is binary and fairly balanced, the prediction complexity is log $_2(\mathit{n})$, equal to the average length of a path from the root to a leaf.
- Computational complexity of training a decision tree on data with n samples and d features is $O(d \cdot n \cdot \log_2(n))$, because at each node we have to consider all the features.
- Decision Trees are very sensitive small changes in the data.
- They are also sensitive to rotating the data. This is because DTs only use vertical decision boundaries such as $x_i = c$; they doesn't use combinations of features.
- Decision Trees can be imbalanced if the classed in data are imbalanced. ◂**◻▸ ◂◚▸**

Reza Rezazadegan (Sharif University) [Introduction to Machine Learning](#page-0-0) November 23, 2022 16/16

 QQ