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Introducing Decision Tree Learning

@ In Decision Tree Learning, a decision tree is learned which gives a
classification of our dataset D = {(x;,y;)}. As usual
x = (x1,x2,...,Xq) are the features of the data.

@ At the root of the tree is the whole training dataset . At each other
node v we have a subset S, C D.

@ Each edge represents a “decision” or “rule” on the value of a feature
e.g. “xx > 0.24".

o If u— v is an edge (i.e. u is the parent of v) with a decision such as
xk < cthen S, ={x€S,:xx < c}.

@ Decision Tree Learning algorithms such as ID3 or CART use a
measure of impurity (such as entropy or Gini impurity) and at each
node, try to find a feature-condition pair that reduces impurity most.

@ Such algorithms try to find a tree whose leaves S, are pure, i.e.
contain only one class.
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Example of a Decision Tree
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Measures of Impurity: Entropy

@ Remember that the Shannon Entropy of a probability distribution p
is given by H(p) = —E[logz p|] = — 3~ p(x) log, p(x).
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@ Remember that the Shannon Entropy of a probability distribution p
is given by H(p) = —E[logz p|] = — 3~ p(x) log, p(x).

@ Idea: when p(x) is close to 1 then the surprise of the event x is low; if
its close to 0 then the surprise is high.
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@ Remember that the Shannon Entropy of a probability distribution p
is given by H(p) = —E[logz p|] = — 3~ p(x) log, p(x).

@ Idea: when p(x) is close to 1 then the surprise of the event x is low; if
its close to O then the surprise is high. —log(p(x)) = log(1/p(x)).

e H(P) =0 if and only if p(xp) =1 for some xp.

@ Theorem: Among distributions on the same sample space, maximum
entropy belongs to the uniform distribution.

@ Thus entropy is a measure of uncertainty of a probability distribution
or random variable.

@ Shannon’s source coding theorem: a random variable X with
probability distribution p can not be compressed into more than H(p)
bits of information.

@ In case we have a set S containing elements belonging to m different
classes, and p(k) is the probability of belonging to class k then H(p)
is a measure of “mixedness” (or impurity) of S in terms of classes.
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@ For example consider the Bernoulli distribution:
p(y =1) = p,p(y =0) =1 — p. Its entropy is given by
—plog(p) — (1 — p) log(1 — p).
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@ A fair coin is more surprising than a biased coin!

@ We can interpret this probability distribution as coming from a mix of
two classes y =0,y = 1.

@ More generally if S is a set of N elements, partitioned into classes
C1, G ... Gy then it gives us the probability distribution
p(Ck) = |Ck|/|S| and we can compute its entropy:
H(S) = 32, 1§ (log(N) — log(ICil)-
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Information Gain and the ID3 (Iterative Dichotomiser 3)

algorithm

@ At each node v of a decision tree, we want to split S, in such a way
that the impurity (entropy in this case) of the children is much
smaller than that of v.
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@ To this end, we use the Information Gain (IG) of parent and
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@ Note that the base of logarithm is unimportant for computing IG, as
long as it is the same throughout.
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Information Gain and the ID3 (Iterative Dichotomiser 3)

algorithm

@ At each node v of a decision tree, we want to split S, in such a way
that the impurity (entropy in this case) of the children is much
smaller than that of v.

@ To this end, we use the Information Gain (IG) of parent and
children. If u1, up, ..., ux are the children of v and we assign subsets
Su; € Sy to them which make a partition of S, then

IG(v,{u1,...,uc}) = H(S)) Zpsu,)H ) (1)

Here p(S,,) = Su/1S.1.

@ Note that the base of logarithm is unimportant for computing IG, as
long as it is the same throughout.

@ At each node v, the algorithm finds the feature x; such that splitting
S, according to the values of x; gives the highest information gain.
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Example of Information Gain

Entire population (30 instances)

p( ®)=16/30=053
p(¥r ) =14/30=047

Balance < 50K Balance > 50K

p(®)=12/13=092 p(®)=4/17=024
p(¥r)=1/13=0.08 pl¥r)=1317=076

Figure: Compute the information gain for this splitting. Credit: Foster provost
and Tom Fawcett

Reza Rezazadegan (Sharif University) Introduction to Machine Learning November 23, 20!



Another example of Information Gain

Entire population (30 instances)

Residence = OWN Residence = RENT Residence = OTHER

*e

p(®)=7/8=088 p(®)=4/10=04 p(®)=5/12=042
p(¥r)=1/8=012 p(¥%)=6/10=06 p(¥&)=7/12=058

Figure: Another splitting of the same set. Credit: Foster Provost and Tom
Fawcett
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ID3 and C4.5 Algorithms

@ For a discrete-valued feature x;, the splitting is done according to its
possible values {1,2,... k}
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{xe S, : xj =2}, etc.
@ The original ID3 algorithm can only handle discrete values.
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ID3 and C4.5 Algorithms

@ For a discrete-valued feature x;, the splitting is done according to its
possible values {1,2,...k} i.e. the children being {x € S, : x; = 1},
{xe S, : xj =2}, etc.

@ The original ID3 algorithm can only handle discrete values. However
the successor C4.5 Algorithm converts continuous features into
discrete ones.

@ A continuous feature x; can be discretized by dividing its range into
intervals [c1, ¢2), [c2, 3), ..., [cn—1, Cn] and treating these intervals as
discrete values.

@ This way, starting from the root, the algorithm grows the decision
tree. A node is taken as a leaf if its set is pure or if the set cannot be
split by features anymore, or if a preset maximum depth is reached.
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ID3 and C4.5 Algorithms cont.

@ After the decision tree is learned, for inference (prediction) for a new
instance x, starting from the root, the tree is traversed to find the

node to which x belongs.

November 23, 2022 10/16

Reza Rezazadegan (Sharif University) Introduction to Machine Learning



ID3 and C4.5 Algorithms cont.

@ After the decision tree is learned, for inference (prediction) for a new
instance x, starting from the root, the tree is traversed to find the
node to which x belongs. The most frequent class in the node is
assigned to x.
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ID3 and C4.5 Algorithms cont.

@ After the decision tree is learned, for inference (prediction) for a new
instance x, starting from the root, the tree is traversed to find the
node to which x belongs. The most frequent class in the node is
assigned to x.

e ID3, C4.5 and CART algorithms are greedy algorithms that may not
reach the global optimum.

@ The global Decision Tree optimization problem for a dataset D takes
place on the space of all trees T whose nodes v are labeled with
subsets S, C D. The loss (error) function for such a tree is defined as:

Uy = X s Hes.). @)

veT

@ However finding the optimal tree w.r.t. L is NP-Complete and thus
we use greedy algorithms to find a near-optimum.

Reza Rezazadegan (Sharif University) Introduction to Machine Learning November 23, 2022 10/16



Gini Impurity and the CART algorithm

@ Gini impurity is another measure of mixedness and is given by

G(P) =1~ ¢} 3)
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@ Gini impurity is slightly faster to compute than entropy.

@ The CART (Classification and Regression Trees) algorithm is another
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Gini Impurity and the CART algorithm

@ Gini impurity is another measure of mixedness and is given by

P)=1-Y 4 3)

@ Gini impurity is slightly faster to compute than entropy.

@ The CART (Classification and Regression Trees) algorithm is another
decision tree learning algorithm that produces only binary trees.

@ At each node v, feature-threshold pairs (x;, c) are examined, and for
each, two children are considered: S, = {x € S, : x; < ¢} and
Sy, ={xe S, :x; > c}.

@ The pair that minimizes ||S;v1“ G(Su,) + ||S”2|| G(S.,) is chosen to split

the tree.

@ In Scikit-Learn, decision tree classifier is provided by the class
tree.DecisionTreeClassifier and uses the CART algorithm and
currently does not support categorical features.
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Overfitting and regularization in Decision Tree Learning

(DTL)

@ DT learning algorithms can produce complicated decision trees for
larger datasets, specially if there are many features.
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@ This is because DTL is a nonparametric model which does not make
any assumptions on the distribution of data. Thus it has more
degrees of freedom than a parametric model such as Naive Bayes or
Linear Regression.

@ A parametric model is fully determined by its parameters e.g. mean
and standard deviation in Gaussian Naive Bayes.

@ To restrict the freedom of DTL, we can use a few parameters in
DecisionTreeClassifier such as:

o max_depth: maximum depth of the tree (maximum number of edges
between the root and leaves).
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Overfitting and regularization in Decision Tree Learning

(DTL)

@ DT learning algorithms can produce complicated decision trees for
larger datasets, specially if there are many features.

@ This is because DTL is a nonparametric model which does not make
any assumptions on the distribution of data. Thus it has more
degrees of freedom than a parametric model such as Naive Bayes or
Linear Regression.

@ A parametric model is fully determined by its parameters e.g. mean
and standard deviation in Gaussian Naive Bayes.

@ To restrict the freedom of DTL, we can use a few parameters in
DecisionTreeClassifier such as:

o max_depth: maximum depth of the tree (maximum number of edges
between the root and leaves).

e min_samples_leaf: the minimum number of samples a leaf is allowed
to have.
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@ DT learning algorithms can produce complicated decision trees for
larger datasets, specially if there are many features.

@ This is because DTL is a nonparametric model which does not make
any assumptions on the distribution of data. Thus it has more
degrees of freedom than a parametric model such as Naive Bayes or
Linear Regression.

@ A parametric model is fully determined by its parameters e.g. mean
and standard deviation in Gaussian Naive Bayes.

@ To restrict the freedom of DTL, we can use a few parameters in
DecisionTreeClassifier such as:

o max_depth: maximum depth of the tree (maximum number of edges

between the root and leaves).
e min_samples_leaf: the minimum number of samples a leaf is allowed

to have.
e min _samples_split: minimum number of samples a node must have
to be allowed to split.
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(DTL) cont.
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Figure: An example of Decision Tree Learning with and without regularization.

Credit: Aurelien Geron
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Figure: An example of Decision Tree Learning with and without regularization.
Credit: Aurelien Geron

@ In Scikit, decision boundaries for a classifier can be drawn using the
inspection.DecisionBoundaryDisplay.from estimator
function.
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Decision Tree Regression

@ The CART algorithm can be used for regression as well.
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continuous target variable y, the predicted value y of each node of
the tree is the average of the y of its datapoints.
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o The CART algorithm can be used for regression as well. For a
continuous target variable y, the predicted value y of each node of
the tree is the average of the y of its datapoints.
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predicted and actual values of elements:
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@ Similar to the case of classification, the CART algorithm tries to split
each node in such a way that minimizes this impurity.
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Decision Tree Regression

o The CART algorithm can be used for regression as well. For a
continuous target variable y, the predicted value y of each node of
the tree is the average of the y of its datapoints.

@ The measure of impurity is now, the Means Square Error between the
predicted and actual values of elements:

6(S)=e1 O i3 (4)

| V| (Xiayi)esv

@ Similar to the case of classification, the CART algorithm tries to split
each node in such a way that minimizes this impurity.

@ In Scikit, decision tree regression is provided by
tree.DecisionTreeRegressor.
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Decision Tree Regression
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Figure: An example of Decision Tree Regression on sinusoidal data. We have only
one feature which is plotted on the x-axis.
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Pros and Cons of Decision Tree Learning (DTL)

@ Decision Trees are highly explainable.
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@ They are also sensitive to rotating the data. This is because DTs only
use vertical decision boundaries such as x; = c; they doesn't use
combinations of features.
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Pros and Cons of Decision Tree Learning (DTL)

@ Decision Trees are highly explainable.

@ Decision Trees work natively as multi-class classifiers.

@ DTL does not make any assumptions on the distribution of data and
does not need data normalization.

@ Assuming the tree is binary and fairly balanced, the prediction
complexity is log,(n), equal to the average length of a path from the
root to a leaf.

@ Computational complexity of training a decision tree on data with n
samples and d features is O(d - n - log,(n)), because at each node we
have to consider all the features.

@ Decision Trees are very sensitive small changes in the data.

@ They are also sensitive to rotating the data. This is because DTs only
use vertical decision boundaries such as x; = c; they doesn't use
combinations of features.

@ Decision Trees can be imbalanced if the classed in data are

imbalanced.
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