Chapter 4: Bayesian Learning

Reza Rezazadegan

Sharif University of Technology

4 □

∍

We have seen that an ML model in a given family (e.g. Logistic Regression or Neural Networks) is determined by its parameters

We have seen that an ML model in a given family (e.g. Logistic Regression or Neural Networks) is determined by its parameters and that the values of the parameters are determined in the training process.

- We have seen that an ML model in a given family (e.g. Logistic Regression or Neural Networks) is determined by its parameters and that the values of the parameters are determined in the training process.
- The basic idea behind Bayesian Learning is that model parameters instead of having deterministic values, are given by a probability distribution.

- We have seen that an ML model in a given family (e.g. Logistic Regression or Neural Networks) is determined by its parameters and that the values of the parameters are determined in the training process.
- The basic idea behind Bayesian Learning is that model parameters instead of having deterministic values, are given by a probability distribution.
- Thus Bayesian Learning is inherently more complex than other methods.

- We have seen that an ML model in a given family (e.g. Logistic Regression or Neural Networks) is determined by its parameters and that the values of the parameters are determined in the training process.
- The basic idea behind Bayesian Learning is that model parameters instead of having deterministic values, are given by a probability distribution.
- Thus Bayesian Learning is inherently more complex than other methods.
- **The Frequentist view of statistics:** probability is the limit of the frequency of occurrence when the number of samples goes towards infinity.

- We have seen that an ML model in a given family (e.g. Logistic Regression or Neural Networks) is determined by its parameters and that the values of the parameters are determined in the training process.
- The basic idea behind Bayesian Learning is that model parameters instead of having deterministic values, are given by a probability distribution.
- Thus Bayesian Learning is inherently more complex than other methods.
- **The Frequentist view of statistics:** probability is the limit of the frequency of occurrence when the number of samples goes towards infinity.
- The Bayesian view of statistics: probability is a measure of belief in the occurrence of events.

$$
P(H|D) = \frac{P(D|H)P(H)}{P(D)}
$$

4 0 8

(1)

$$
P(H|D) = \frac{P(D|H)P(H)}{P(D)}\tag{1}
$$

- \bullet Here H is interpreted as a hypothesis (e.g. our model parameters) and D is the frequency distribution of the data.
- \bullet $P(H|D)$: Posterior

$$
P(H|D) = \frac{P(D|H)P(H)}{P(D)}\tag{1}
$$

- \bullet Here H is interpreted as a hypothesis (e.g. our model parameters) and D is the frequency distribution of the data.
- $P(H|D)$: Posterior
- \bullet $P(H)$: Prior

$$
P(H|D) = \frac{P(D|H)P(H)}{P(D)}\tag{1}
$$

- \bullet Here H is interpreted as a hypothesis (e.g. our model parameters) and D is the frequency distribution of the data.
- $P(H|D)$: Posterior
- \bullet $P(H)$: Prior
- \bullet $P(D|H)$: Likelihood

$$
P(H|D) = \frac{P(D|H)P(H)}{P(D)}\tag{1}
$$

- \bullet Here H is interpreted as a hypothesis (e.g. our model parameters) and D is the frequency distribution of the data.
- \bullet $P(H|D)$: Posterior
- \bullet $P(H)$: Prior
- \bullet $P(D|H)$: Likelihood
- \bullet $P(D)$: Evidence

$$
P(H|D) = \frac{P(D|H)P(H)}{P(D)}\tag{1}
$$

- \bullet Here H is interpreted as a hypothesis (e.g. our model parameters) and D is the frequency distribution of the data.
- \bullet $P(H|D)$: Posterior
- \bullet $P(H)$: Prior
- \bullet $P(D|H)$: Likelihood
- \bullet $P(D)$: Evidence
- **Prior believes influence posterior believes!**

• Let x_1, x_2, \ldots, x_d be our features, $\mathbf{x} = (x_1, x_2, \ldots, x_d)$ and C_1, C_2, \ldots, C_m be the classes.

4 0 8

• Let x_1, x_2, \ldots, x_d be our features, $\mathbf{x} = (x_1, x_2, \ldots, x_d)$ and C_1, C_2, \ldots, C_m be the classes. We want to know the *posterior* probability of x belonging to C_k i.e. $P(C_k | x)$.

• Let x_1, x_2, \ldots, x_d be our features, $\mathbf{x} = (x_1, x_2, \ldots, x_d)$ and C_1, C_2, \ldots, C_m be the classes. We want to know the *posterior* probability of x belonging to C_k i.e. $P(C_k | x)$. The Bayes rule tells us:

$$
P(C_k|\mathbf{x}) = \frac{P(\mathbf{x}|C_k)P(C_k)}{P(\mathbf{x})}.
$$
 (2)

• Let x_1, x_2, \ldots, x_d be our features, $\mathbf{x} = (x_1, x_2, \ldots, x_d)$ and C_1, C_2, \ldots, C_m be the classes. We want to know the *posterior* probability of x belonging to C_k i.e. $P(C_k | x)$. The Bayes rule tells us:

$$
P(C_k|\mathbf{x}) = \frac{P(\mathbf{x}|C_k)P(C_k)}{P(\mathbf{x})}.
$$
 (2)

 200

• The Prior $P(C_k)$ is the fraction of datapoints belonging to the class C_k .

• Let x_1, x_2, \ldots, x_d be our features, $\mathbf{x} = (x_1, x_2, \ldots, x_d)$ and C_1, C_2, \ldots, C_m be the classes. We want to know the posterior probability of x belonging to C_k i.e. $P(C_k | x)$. The Bayes rule tells us:

$$
P(C_k|\mathbf{x}) = \frac{P(\mathbf{x}|C_k)P(C_k)}{P(\mathbf{x})}.
$$
 (2)

- The Prior $P(C_k)$ is the fraction of datapoints belonging to the class C_{k} .
- The likelihood $P(x|C_k)$ can be computed using the "naive" Conditional Independence hypothesis:

• Let x_1, x_2, \ldots, x_d be our features, $\mathbf{x} = (x_1, x_2, \ldots, x_d)$ and C_1, C_2, \ldots, C_m be the classes. We want to know the posterior probability of x belonging to C_k i.e. $P(C_k | x)$. The Bayes rule tells us:

$$
P(C_k|\mathbf{x}) = \frac{P(\mathbf{x}|C_k)P(C_k)}{P(\mathbf{x})}.
$$
 (2)

- The Prior $P(C_k)$ is the fraction of datapoints belonging to the class C_{k} .
- The likelihood $P(x|C_k)$ can be computed using the "naive" Conditional Independence hypothesis:

$$
P(\mathbf{x}|C_k) = P(x_1|C_k)P(x_2|C_k)\cdots P(x_d|C_k).
$$
 (3)

We are assuming that features in each class are independent of each other!

• Let x_1, x_2, \ldots, x_d be our features, $\mathbf{x} = (x_1, x_2, \ldots, x_d)$ and C_1, C_2, \ldots, C_m be the classes. We want to know the *posterior* probability of x belonging to C_k i.e. $P(C_k | x)$. The Bayes rule tells us:

$$
P(C_k|\mathbf{x}) = \frac{P(\mathbf{x}|C_k)P(C_k)}{P(\mathbf{x})}.
$$
 (2)

- The Prior $P(C_k)$ is the fraction of datapoints belonging to the class C_{k} .
- The likelihood $P(x|C_k)$ can be computed using the "naive" Conditional Independence hypothesis:

$$
P(\mathbf{x}|C_k) = P(x_1|C_k)P(x_2|C_k)\cdots P(x_d|C_k).
$$
 (3)

We are assuming that features in each class are independent of each other!

• Since, $P(x)$ is independent of C_k and we are looking for a class k that maximized $P(C_k | \mathbf{x})$, we can drop $P(\mathbf{x})$. (Alternatively, consider $P(C_k|\mathbf{x})/P(C_l|\mathbf{x})).$ Ω

Reza Rezazadegan (Sharif University) [Introduction to Machine Learning](#page-0-0) November 15, 2022 4/11

The probabilities $P(\textit{x}_{i}|\textit{C}_{k})$ can be estimated by assuming that the feature values follow a probability distribution (such as normal or Bernoulli distribution) and using training data to estimate the parameters of the distribution.

- The probabilities $P(\textit{x}_{i}|\textit{C}_{k})$ can be estimated by assuming that the feature values follow a probability distribution (such as normal or Bernoulli distribution) and using training data to estimate the parameters of the distribution.
- \bullet For example for continuous features (quantities), such as height, IQ, etc, often follow a Gaussian (normal) distribution:

- The probabilities $P(\textit{x}_{i}|\textit{C}_{k})$ can be estimated by assuming that the feature values follow a probability distribution (such as normal or Bernoulli distribution) and using training data to estimate the parameters of the distribution.
- \bullet For example for continuous features (quantities), such as height, IQ, etc, often follow a Gaussian (normal) distribution:

$$
P(x_i = v) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(v-\mu)^2}{2\sigma^2}}
$$
(4)

where μ,σ are the mean and standard deviation of the feature x_i in the class C_k

- The probabilities $P(\textit{x}_{i}|\textit{C}_{k})$ can be estimated by assuming that the feature values follow a probability distribution (such as normal or Bernoulli distribution) and using training data to estimate the parameters of the distribution.
- \bullet For example for continuous features (quantities), such as height, IQ, etc, often follow a Gaussian (normal) distribution:

$$
P(x_i = v) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(v-\mu)^2}{2\sigma^2}}
$$
(4)

where μ,σ are the mean and standard deviation of the feature x_i in the class C_k and can be estimated from the data.

- The probabilities $P(\textit{x}_{i}|\textit{C}_{k})$ can be estimated by assuming that the feature values follow a probability distribution (such as normal or Bernoulli distribution) and using training data to estimate the parameters of the distribution.
- \bullet For example for continuous features (quantities), such as height, IQ, etc, often follow a Gaussian (normal) distribution:

$$
P(x_i = v) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(v-\mu)^2}{2\sigma^2}}
$$
(4)

where μ,σ are the mean and standard deviation of the feature x_i in the class C_k and can be estimated from the data.

For each **x**, the class C_k that maximizes $p(C_i|\mathbf{x})$ among different $C_i,$ is chosen as the predicted class of x.

Consider the following dataset:

Use the Naive Bayes Classifier with Gaussian distribution to predict the gender of a person whose height, weight and foot size are, respectively, 6, 130, 8.

• The **Bernoulli distribution** can be used for binary-valued features $x_i \in \{0, 1\}$ (e.g. whether a word occurs in a short text or not):

• The **Bernoulli distribution** can be used for binary-valued features $x_i \in \{0, 1\}$ (e.g. whether a word occurs in a short text or not):

$$
P(\mathbf{x}|C_k) = \prod_{i=1}^{d} p_i^{x_i} (1-p_i)^{1-x_i}
$$
 (5)

• The **Bernoulli distribution** can be used for binary-valued features $x_i \in \{0,1\}$ (e.g. whether a word occurs in a short text or not):

$$
P(\mathbf{x}|C_k) = \prod_{i=1}^d p_i^{x_i} (1-p_i)^{1-x_i}
$$
 (5)

where p_i is the probability that the class k involves x_i .

• For example imagine the the two classes are spam and ham, and our training data consists of short emails labeled by these two classes.

• The **Bernoulli distribution** can be used for binary-valued features $x_i \in \{0,1\}$ (e.g. whether a word occurs in a short text or not):

$$
P(\mathbf{x}|C_k) = \prod_{i=1}^d p_i^{x_i} (1-p_i)^{1-x_i}
$$
 (5)

- For example imagine the the two classes are spam and ham, and our training data consists of short emails labeled by these two classes.
- If w_1, w_2, \ldots, w_d represent the combined vocabulary of the training texts, then the feature $x_i(T)$, of a document T, is 0 or 1 based on whether the word w_i occurs in T or not.

• The **Bernoulli distribution** can be used for binary-valued features $x_i \in \{0,1\}$ (e.g. whether a word occurs in a short text or not):

$$
P(\mathbf{x}|C_k) = \prod_{i=1}^d p_i^{x_i} (1-p_i)^{1-x_i}
$$
 (5)

- For example imagine the the two classes are spam and ham, and our training data consists of short emails labeled by these two classes.
- If w_1, w_2, \ldots, w_d represent the combined vocabulary of the training texts, then the feature $x_i(T)$, of a document T, is 0 or 1 based on whether the word w_i occurs in T or not.
- Then, \boldsymbol{p}_i for the class *spam* is the probability of spam emails containing the word w_i .

• The **Bernoulli distribution** can be used for binary-valued features $x_i \in \{0,1\}$ (e.g. whether a word occurs in a short text or not):

$$
P(\mathbf{x}|C_k) = \prod_{i=1}^d p_i^{x_i} (1-p_i)^{1-x_i}
$$
 (5)

- For example imagine the the two classes are spam and ham, and our training data consists of short emails labeled by these two classes.
- If w_1, w_2, \ldots, w_d represent the combined vocabulary of the training texts, then the feature $x_i(T)$, of a document T, is 0 or 1 based on whether the word w_i occurs in T or not.
- Then, \boldsymbol{p}_i for the class *spam* is the probability of spam emails containing the word w_i . It is simply the fraction of training spam emails which contain this word!

 \bullet The Multinomial Distribution is used when features x_i are counts, e.g. the count of words in documents.

- \bullet The Multinomial Distribution is used when features x_i are counts, e.g. the count of words in documents.
- In Natural Language Processing, a document is often regarded as a bag of words, regardless of the order of words in it.

- The Multinomial Distribution is used when features x_i are counts, e.g. the count of words in documents.
- In Natural Language Processing, a document is often regarded as a bag of words, regardless of the order of words in it.
- If p_i is the probability of feature i occurring in class \mathcal{C}_k then the Multinomial Distribution gives us:

- The Multinomial Distribution is used when features x_i are counts, e.g. the count of words in documents.
- In Natural Language Processing, a document is often regarded as a bag of words, regardless of the order of words in it.
- If p_i is the probability of feature i occurring in class \mathcal{C}_k then the Multinomial Distribution gives us:

$$
P(\mathbf{x}|C_k) = \frac{(x_1 + x_2 + \dots + x_d)!}{x_1!x_2! \dots x_d!} p_1^{x_1} p_2^{x_2} \dots p_d^{x_d}
$$
(6)

 Ω

- The Multinomial Distribution is used when features x_i are counts, e.g. the count of words in documents.
- In Natural Language Processing, a document is often regarded as a bag of words, regardless of the order of words in it.
- If p_i is the probability of feature i occurring in class \mathcal{C}_k then the Multinomial Distribution gives us:

$$
P(\mathbf{x}|C_k) = \frac{(x_1 + x_2 + \dots + x_d)!}{x_1!x_2! \dots x_d!} p_1^{x_1} p_2^{x_2} \dots p_d^{x_d}
$$
(6)

• In text classification, the feature $x_i(T)$ of a document T, is the count of the word w_i in T .

 Ω

- • The Multinomial Distribution is used when features x_i are counts, e.g. the count of words in documents.
- In Natural Language Processing, a document is often regarded as a bag of words, regardless of the order of words in it.
- If p_i is the probability of feature i occurring in class \mathcal{C}_k then the Multinomial Distribution gives us:

$$
P(\mathbf{x}|C_k) = \frac{(x_1 + x_2 + \dots + x_d)!}{x_1!x_2! \dots x_d!} p_1^{x_1} p_2^{x_2} \dots p_d^{x_d}
$$
(6)

- In text classification, the feature $x_i(T)$ of a document T, is the count of the word w_i in T .
- The probabilities p_i are approximated by the number of times, in our training data, the feature i (e.g. the word w_i) appears in class C_k , divided by the number of all features (e.g. words) in the class C_k .

- • The Multinomial Distribution is used when features x_i are counts, e.g. the count of words in documents.
- In Natural Language Processing, a document is often regarded as a bag of words, regardless of the order of words in it.
- If p_i is the probability of feature i occurring in class \mathcal{C}_k then the Multinomial Distribution gives us:

$$
P(\mathbf{x}|C_k) = \frac{(x_1 + x_2 + \dots + x_d)!}{x_1!x_2! \dots x_d!} p_1^{x_1} p_2^{x_2} \dots p_d^{x_d}
$$
(6)

- In text classification, the feature $x_i(T)$ of a document T, is the count of the word w_i in T .
- The probabilities p_i are approximated by the number of times, in our training data, the feature i (e.g. the word w_i) appears in class C_k , divided by the number of all features (e.g. words) in the class C_k .
- \bullet Multinomial Naive Bayes does not assume [con](#page-37-0)[di](#page-39-0)[ti](#page-31-0)[o](#page-32-0)[n](#page-38-0)[a](#page-39-0)[l i](#page-0-0)[nd](#page-54-0)[ep](#page-0-0)[en](#page-54-0)[de](#page-0-0)[nce](#page-54-0)l $_{\diamond,\diamond}$

Even though Conditional Independence is a strong assumption, Naive Bayes is a powerful classifier.

- Even though Conditional Independence is a strong assumption, Naive Bayes is a powerful classifier.
- Naive Bayes is a probabilistic, multi-class classifier. It needs a small amount of training data.

- **Even though Conditional Independence is a strong assumption, Naive** Bayes is a powerful classifier.
- Naive Bayes is a probabilistic, multi-class classifier. It needs a small amount of training data.
- The conditional independence assumption helps with high dimensional data (i.e. a lot of features).

- **Even though Conditional Independence is a strong assumption, Naive** Bayes is a powerful classifier.
- Naive Bayes is a probabilistic, multi-class classifier. It needs a small amount of training data.
- The conditional independence assumption helps with high dimensional data (i.e. a lot of features).
- Naive Bayes works particularly well in document classification and spam filtering.

- **Even though Conditional Independence is a strong assumption, Naive** Bayes is a powerful classifier.
- Naive Bayes is a probabilistic, multi-class classifier. It needs a small amount of training data.
- The conditional independence assumption helps with high dimensional data (i.e. a lot of features).
- Naive Bayes works particularly well in document classification and spam filtering.
- Naive Bayes can be used for online learning, as it is easy to update distribution parameters according to new data.

- **Even though Conditional Independence is a strong assumption, Naive** Bayes is a powerful classifier.
- Naive Bayes is a probabilistic, multi-class classifier. It needs a small amount of training data.
- The conditional independence assumption helps with high dimensional data (i.e. a lot of features).
- Naive Bayes works particularly well in document classification and spam filtering.
- Naive Bayes can be used for online learning, as it is easy to update distribution parameters according to new data.
- Even though NB is a good classifier, the probabilities it produces are not precise.

- **Even though Conditional Independence is a strong assumption, Naive** Bayes is a powerful classifier.
- Naive Bayes is a probabilistic, multi-class classifier. It needs a small amount of training data.
- The conditional independence assumption helps with high dimensional data (i.e. a lot of features).
- Naive Bayes works particularly well in document classification and spam filtering.
- Naive Bayes can be used for online learning, as it is easy to update distribution parameters according to new data.
- Even though NB is a good classifier, the probabilities it produces are not precise.
- In Scikit-Learn, Naive Bayes is provided through classes MultinomialNB, BernoulliNB and GaussianNB

• Naive Bayes learns the *joint probability distribution* $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k).$

4 0 8

 299

э

• Naive Bayes learns the *joint probability distribution* $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k)$. Hence it is a generative classifier.

- Naive Bayes learns the joint probability distribution $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k)$. Hence it is a generative classifier.
- When we have the distribution $p(x, C)$, we can sample features of elements belonging to each class C.

- Naive Bayes learns the joint probability distribution $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k)$. Hence it is a generative classifier.
- When we have the distribution $p(x, C)$, we can sample features of elements belonging to each class C.
- For example in Naive Bayes with Bernoulli distribution, we are modeling which words would occur in each class.

- Naive Bayes learns the joint probability distribution $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k)$. Hence it is a generative classifier.
- When we have the distribution $p(x, C)$, we can sample features of elements belonging to each class C.
- For example in Naive Bayes with Bernoulli distribution, we are modeling which words would occur in each class. A short text can, to some extent, be reconsructed from this knowledge.

- Naive Bayes learns the joint probability distribution $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k)$. Hence it is a generative classifier.
- When we have the distribution $p(x, C)$, we can sample features of elements belonging to each class C.
- For example in Naive Bayes with Bernoulli distribution, we are modeling which words would occur in each class. A short text can, to some extent, be reconsructed from this knowledge.
- Generative models model how each class "generates" data.

- Naive Bayes learns the joint probability distribution $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k)$. Hence it is a generative classifier.
- When we have the distribution $p(x, C)$, we can sample features of elements belonging to each class C.
- For example in Naive Bayes with Bernoulli distribution, we are modeling which words would occur in each class. A short text can, to some extent, be reconsructed from this knowledge.
- Generative models model how each class "generates" data.
- Discriminative models, such as Logistic Regression, directly learn $p(C|\mathbf{x})$, i.e. which features are most useful in distinguishing between classes.

 QQ

- Naive Bayes learns the joint probability distribution $p(\mathbf{x}, C_k) = P(\mathbf{x}|C_k)p(C_k)$. Hence it is a generative classifier.
- When we have the distribution $p(x, C)$, we can sample features of elements belonging to each class C.
- For example in Naive Bayes with Bernoulli distribution, we are modeling which words would occur in each class. A short text can, to some extent, be reconsructed from this knowledge.
- Generative models model how each class "generates" data.
- Discriminative models, such as Logistic Regression, directly learn $p(C|\mathbf{x})$, i.e. which features are most useful in distinguishing between classes.
- Discriminative models cannot tell whether an instance is likely or not.

Discriminative Model \bullet

• Generative Model

Figure: Credit: Google ML

4 □