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Ordinary Least Squares (OLS) Regression

@ The assumption behind OLS is that data is linear and the deviation of
data from a straight line is just noise.
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Ordinary Least Squares (OLS) Regression

@ The assumption behind OLS is that data is linear and the deviation of
data from a straight line is just noise.

@ Problem: given a set of datapoints D = {(x;, y;)}"_; find a linear
function f(x) that "best” approximates (or fits) D.

@ We have y; € R but x; € RY.

@ Best approximation means that f is a minimum of the error function

E(f) = 32:(yi — F(x1))*.
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Ordinary Least Squares (OLS) Regression

@ The assumption behind OLS is that data is linear and the deviation of
data from a straight line is just noise.

@ Problem: given a set of datapoints D = {(x;, y;)}"_; find a linear
function f(x) that "best” approximates (or fits) D.

@ We have y; € R but x; € RY.

@ Best approximation means that f is a minimum of the error function
E(f) = >i(vi — f(xi))*.

o Geometrically, this is equivalent to finding a hypersurface in R9+1
which minimizes the sum of the squares of distances of the points

{(xi, y) iy
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Ordinary Least Squares (OLS) Regression

The assumption behind OLS is that data is linear and the deviation of
data from a straight line is just noise.

Problem: given a set of datapoints D = {(x;,y;)}"_; find a linear
function f(x) that "best” approximates (or fits) D.

We have y; € R but x; € RY.

Best approximation means that f is a minimum of the error function
E(f) = >i(vi — f(xi))*.

Geometrically, this is equivalent to finding a hypersurface in R9+!
which minimizes the sum of the squares of distances of the points
{(xi,y)}"_;. Equivalently, it maximizes the sum of the squares of

lengths of the projections of the points to the plain (called the best-fit
hypersurface for the points).
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
Let X be the n x d matrix whose rows are the vectors x;
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
Let X be the n X d matrix whose rows are the vectors x; and
y:(yl—b,yz—b,...,y,,—b)_
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
Let X be the n X d matrix whose rows are the vectors x; and
y=(1—b,y2—b,...,yn—b).
@ Then
E(f) = E(a) = [ly — Xa[? (1)
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
Let X be the n X d matrix whose rows are the vectors x; and
y=(1—b,y2—b,...,yn—b).
@ Then
E(f) = E(a) = [ly — Xa[?

@ The solution a is the “closest” vector to X ly.
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
Let X be the n X d matrix whose rows are the vectors x; and
y=(1—b,y2—b,...,yn—b).
@ Then
E(f) = E(a) = [ly — Xa[? (1)

@ The solution a is the “closest” vector to X ly.
o E£(a) = (y — Xa)'(y — Xa)
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
Let X be the n X d matrix whose rows are the vectors x; and
y=(1—b,y2—b,...,yn—b).
@ Then
E(f) = E(a) = [ly — Xa[? (1)

@ The solution a is the “closest” vector to X ly.
e £(a) =(y — Xa)i(y — Xa)=y'y — y'Xa —a' X'y + a’ X' Xa
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Solving the optimization problem for linear regression

Write f(x) = (a,x) + b,
Let X be the n x d matrix whose rows are the vectors x; and
y=01—by2—b,...,yn—b).
Then
E(f) = E(a) = |ly — Xal|*
The solution a is the “closest” vector to X ly.
E(a) = (y — Xa)'(y — Xa)=y'y —y'Xa—a'X'y +a'X"Xa
E(a) = y'y — 2a' X'y + a'X*Xa
4 E(a) = —2X'y + 2X*Xa
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Solving the optimization problem for linear regression

Write f(x) = (a,x) + b,
Let X be the n X d matrix whose rows are the vectors x; and
y:(yl—b,yz—b,...,y,,—b)_

Then
E(f) = E(a) = ly — Xa||*
The solution a is the “closest” vector to X ly.
E(a) = (y — Xa)'(y — Xa)=y'y —y'Xa—a'X'y + a'X'Xa
E(a) = y'y — 2a' X'y + a'X*Xa
4 E(a) = —2X'y + 2X*Xa

4 E(a) = 0 if and only if X'Xa = X'y
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Solving the optimization problem for linear regression

e Write f(x) = (a,x) + b,
Let X be the n X d matrix whose rows are the vectors x; and
y:(yl—b,yz—b,...,y,,—b)_

@ Then
E(f) = E(a) = ly — Xa||* (1)
@ The solution a is the “closest” vector to X ly.
o E(a) = (y — Xa)l(y — Xa)=y'y —y"Xa—a'X'y + a' X' Xa
e F(a) =y'y —2a'X'y + a'X*Xa
o LF(a)=—-2X'y+2X'Xa

4 F(a) = 0 if and only if X!Xa = Xty
If XX is invertible then a = (X*X)~1X'y. (The normal equation)
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Collinearity of features

@ Remember: the solution to the linear regression problem is given by
a = (X'X) "1 X'y where the rows of X,y are the data points x;.
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Collinearity of features

@ Remember: the solution to the linear regression problem is given by
a = (X'X) "1 X'y where the rows of X,y are the data points x;.

@ X'X is invertible if n > d rank X = d
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Collinearity of features

@ Remember: the solution to the linear regression problem is given by
a = (X'X) "1 X'y where the rows of X,y are the data points x;.

@ XX is invertible if n > d rank X = d i.e. if the features are linearly
independent.

e Collinearity: when the features are nearly linearly dependent and
thus, det X is close to zero.
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Collinearity of features

@ Remember: the solution to the linear regression problem is given by
a = (X'X) "1 X'y where the rows of X,y are the data points x;.

@ XX is invertible if n > d rank X = d i.e. if the features are linearly
independent.

e Collinearity: when the features are nearly linearly dependent and
thus, det X is close to zero.

@ For example the size and the price of a house are nearly linearly
correlated.
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Collinearity of features

@ Remember: the solution to the linear regression problem is given by
a = (X'X) "1 X'y where the rows of X,y are the data points x;.

@ XX is invertible if n > d rank X = d i.e. if the features are linearly
independent.

e Collinearity: when the features are nearly linearly dependent and
thus, det X is close to zero.

@ For example the size and the price of a house are nearly linearly
correlated.

@ In case of collinearity, the entries of (X*X)~! can be very large and
will jump by small perturbations of data.
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!
e Linear Correlation (Pearson Correlation) between two random

variables A, B is given by
E[AB] — E[A]E[B]

OACh
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!
e Linear Correlation (Pearson Correlation) between two random

variables A, B is given by
E[AB] — E[A]E[B]

OACh
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!
e Linear Correlation (Pearson Correlation) between two random

variables A, B is given by
E[AB] — E[A]E[B]
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@ Available in Python as scipy.stats.pearsonr(A,B) and
scikit.feature selection.r regression(X, y)
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!

e Linear Correlation (Pearson Correlation) between two random
variables A, B is given by

E[AB] — E[A]E[B]

OACh

X O 3

@ Available in Python as scipy.stats.pearsonr(A,B) and
scikit.feature selection.r regression(X, y)

@ Spearman Correlation is the Pearson correlation between the rank
variables of the random variables A, B.
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!

e Linear Correlation (Pearson Correlation) between two random
variables A, B is given by

E[AB] — E[A]E[B]

OACh
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@ Available in Python as scipy.stats.pearsonr(A,B) and
scikit.feature selection.r regression(X, y)

@ Spearman Correlation is the Pearson correlation between the rank
variables of the random variables A, B. Rank variable R4 of A uses
the rank of a value a among all the values of A.
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!
e Linear Correlation (Pearson Correlation) between two random
variables A, B is given by
E[AB] — E[A]E[B]

OACh
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@ Available in Python as scipy.stats.pearsonr(A,B) and
scikit.feature selection.r regression(X, y)

@ Spearman Correlation is the Pearson correlation between the rank
variables of the random variables A, B. Rank variable R4 of A uses
the rank of a value a among all the values of A.

@ Available in Python as scipy.stats.spearmanr (A,B)
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Correlation

@ Correlation between a feature and the target variable good,
correlation between two features bad!
e Linear Correlation (Pearson Correlation) between two random
variables A, B is given by
E[AB] — E[A]E[B]

OACh
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X O 8

@ Available in Python as scipy.stats.pearsonr(A,B) and
scikit.feature selection.r regression(X, y)

@ Spearman Correlation is the Pearson correlation between the rank
variables of the random variables A, B. Rank variable R4 of A uses
the rank of a value a among all the values of A.

@ Available in Python as scipy.stats.spearmanr (A,B)
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Singular Value Decomposition (SVD)

@ Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]
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Singular Value Decomposition (SVD)

@ Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

@ Moreover the columns of V span the best-fitting subspace for the
rows of X.
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Singular Value Decomposition (SVD)

@ Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

@ Moreover the columns of V span the best-fitting subspace for the
rows of X.

@ D is an r X r matrix such that r is the rank of X.
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Singular Value Decomposition (SVD)

@ Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

@ Moreover the columns of V span the best-fitting subspace for the
rows of X.

@ D is an r X r matrix such that r is the rank of X.

@ The diagonal elements of D are the nonzero eigenvalues of XtX,
called the singular values of X.
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Singular Value Decomposition (SVD)

@ Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

@ Moreover the columns of V span the best-fitting subspace for the
rows of X.

@ D is an r X r matrix such that r is the rank of X.

@ The diagonal elements of D are the nonzero eigenvalues of XtX,
called the singular values of X.

e We have (X'X)"1Xt = VD 1yt
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Singular Value Decomposition (SVD)

Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

Moreover the columns of V' span the best-fitting subspace for the
rows of X.

D is an r x r matrix such that r is the rank of X.

The diagonal elements of D are the nonzero eigenvalues of X!X,
called the singular values of X.

We have (X!X)"1Xt = VD~ 1yt
Computing SVD is computationally less complex than inverting Xt X.
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Singular Value Decomposition (SVD)

@ Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

@ Moreover the columns of V span the best-fitting subspace for the
rows of X.

@ D is an r X r matrix such that r is the rank of X.

@ The diagonal elements of D are the nonzero eigenvalues of XtX,
called the singular values of X.

e We have (X'X)"1Xt = VD 1yt
e Computing SVD is computationally less complex than inverting XtX.

@ The linear model.LinearRegression class in Scikit-Learn uses
SVD.
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Singular Value Decomposition (SVD)

Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

Moreover the columns of V' span the best-fitting subspace for the
rows of X.

D is an r x r matrix such that r is the rank of X.

The diagonal elements of D are the nonzero eigenvalues of X!X,
called the singular values of X.

We have (X!X)"1Xt = VD~ 1yt
Computing SVD is computationally less complex than inverting Xt X.

The linear model.LinearRegression class in Scikit-Learn uses
SVD. It sets the diagonal elements of D smaller than a threshold to
zero.
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Singular Value Decomposition (SVD)

Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

Moreover the columns of V' span the best-fitting subspace for the
rows of X.

D is an r x r matrix such that r is the rank of X.

The diagonal elements of D are the nonzero eigenvalues of X!X,
called the singular values of X.

We have (X!X)"1Xt = VD~ 1yt
Computing SVD is computationally less complex than inverting Xt X.

The linear model.LinearRegression class in Scikit-Learn uses
SVD. It sets the diagonal elements of D smaller than a threshold to
zero.

Note: XtX is a d x d matrix where d is the number of features.
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Singular Value Decomposition (SVD)

Theorem. Each real matrix X has a decomposition of the form
X = UDV'* where U, V are orthonormal and D is diagonal with
positive real entries. [Foundations of Data Science, Chapter 3]

Moreover the columns of V' span the best-fitting subspace for the
rows of X.

D is an r x r matrix such that r is the rank of X.

The diagonal elements of D are the nonzero eigenvalues of X!X,
called the singular values of X.

We have (X!X)"1Xt = VD~ 1yt

Computing SVD is computationally less complex than inverting Xt X.
The linear model.LinearRegression class in Scikit-Learn uses

SVD. It sets the diagonal elements of D smaller than a threshold to
zero.

Note: XX is a d x d matrix where d is the number of features.
Thus SVD is O(d?) but linear in terms of the number of instances!
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Polynomial Regression

@ Polynomial regression can be done using linear regression, by adding
the nonlinear terms as new features.
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Polynomial Regression

@ Polynomial regression can be done using linear regression, by adding
the nonlinear terms as new features.

@ For example if we have two features z;, z»p and want degree 3

polynomial regression, we then add zlz,zlzg,zzz,zf,szQ,21222,25’ as

new features.

Reza Rezazadegan (Sharif University) Introduction to ML October 16, 2022



Polynomial Regression

@ Polynomial regression can be done using linear regression, by adding
the nonlinear terms as new features.

@ For example if we have two features z;, z»p and want degree 3
polynomial regression, we then add zlz,zlzg,zzz,zf,szQ,21222,25’ as
new features.

@ The degree of the polynomial is a hyperparameter of the model.
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Polynomial Regression

@ Polynomial regression can be done using linear regression, by adding
the nonlinear terms as new features.

@ For example if we have two features z;, z»p and want degree 3
polynomial regression, we then add zlz,zlzg,zzz,zf,szQ,21222,25’ as
new features.

@ The degree of the polynomial is a hyperparameter of the model.

@ Unlike parameters, hyperparameters of the model are not learned
during training.
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Polynomial Regression

@ Polynomial regression can be done using linear regression, by adding
the nonlinear terms as new features.

@ For example if we have two features z;, z»p and want degree 3
polynomial regression, we then add zlz,zlzg,zzz,zf,szQ,21222,25’ as
new features.

@ The degree of the polynomial is a hyperparameter of the model.

@ Unlike parameters, hyperparameters of the model are not learned
during training.

+ Raw Data
—— 3rd Order Polynomial Fit
—— 5th Order Polynemial Fit
250 Sth Order Polynomial Fit
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Polynomial Regression

@ Polynomial regression can be done using linear regression, by adding
the nonlinear terms as new features.

@ For example if we have two features z;, z»p and want degree 3
polynomial regression, we then add zlz,zlzg,zzz,zf,szQ,21222,25’ as
new features.

@ The degree of the polynomial is a hyperparameter of the model.

@ Unlike parameters, hyperparameters of the model are not learned
during training.

+ Raw Data
—— 3rd Order Polynomial Fit
—— 5th Order Polynemial Fit
250 Sth Order Polynomial Fit

@ In Python, polynomial features can be obtained using
sklearn.preprocessing.PolynomialFeatures
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

e For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of
L decreases.
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

e For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of
L decreases.

@ This is called the Method of Gradient Descent
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

e For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of
L decreases.

@ This is called the Method of Gradient Descent

djr1 = 4a; — - VL(a,-) (2)
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The Method of Gradient Descent

Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of

L decreases.
This is called the Method of Gradient Descent

djr1 = 4a; — - VL(a,-) (2)

ap is chosen randomly.
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

e For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of
L decreases.

@ This is called the Method of Gradient Descent

djr1 = 4a; — - VL(a,-) (2)

ap is chosen randomly.
@ )\ is a hyperparameter called learning rate.
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

e For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of
L decreases.

@ This is called the Method of Gradient Descent
djr1 = 4a; — - VL(a,-) (2)

ap is chosen randomly.

@ )\ is a hyperparameter called learning rate.

o For linear regression, L(a) = >, (a'xx — yx)? and thus
L@ =23 1@ — yi)Xei.  Vi(a) =2(a'X —y)X*
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

e For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of
L decreases.

@ This is called the Method of Gradient Descent
djr1 = 4a; — - VL(a,-) (2)

ap is chosen randomly.

@ )\ is a hyperparameter called learning rate.

o For linear regression, L(a) = >, (a'xx — yx)? and thus
L@ =23 1@ — yi)Xei.  Vi(a) =2(a'X —y)X*

@ Note that at each point a; in the parameter space, the cost function
has to be evaluated on the whole dataset!
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The Method of Gradient Descent

@ Not all optimization problems in machine learning have a closed-form
solution as in linear regression e.g. neural networks or evolutionary
algorithms.

e For differentiable cost (loss or error) functions L, we know that at
each point a, moving slightly in the direction of —VL(a), the value of
L decreases.

@ This is called the Method of Gradient Descent
djr1 = 4a; — - VL(a,-) (2)

ap is chosen randomly.
@ )\ is a hyperparameter called learning rate.
o For linear regression, L(a) = >, (a'xx — yx)? and thus
L@ =23 1@ — yi)Xei.  Vi(a) =2(a'X —y)X*
@ Note that at each point a; in the parameter space, the cost function

has to be evaluated on the whole dataset! But GD scales well with
the number of features.
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.
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e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

o Pitfall Il: It may take a very long time for the method to converge.
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

o Pitfall Il: It may take a very long time for the method to converge.
@ Convex cost functions have only one minimum. E.g. in linear
regression.
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

o Pitfall Il: It may take a very long time for the method to converge.

@ Convex cost functions have only one minimum. E.g. in linear
regression.

e Exploration: means searching different parts of the “fitness
landscape” in search of the global minimum.
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

o Pitfall Il: It may take a very long time for the method to converge.

@ Convex cost functions have only one minimum. E.g. in linear
regression.

e Exploration: means searching different parts of the “fitness
landscape” in search of the global minimum. Corresponds to a large
learning rate.
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

o Pitfall Il: It may take a very long time for the method to converge.

@ Convex cost functions have only one minimum. E.g. in linear
regression.

e Exploration: means searching different parts of the “fitness
landscape” in search of the global minimum. Corresponds to a large
learning rate.

@ Exploitation: means using the regularity of the cost function to make
local improvements to the cost function.
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

o Pitfall Il: It may take a very long time for the method to converge.

@ Convex cost functions have only one minimum. E.g. in linear
regression.

e Exploration: means searching different parts of the “fitness
landscape” in search of the global minimum. Corresponds to a large
learning rate.

@ Exploitation: means using the regularity of the cost function to make
local improvements to the cost function. Corresponds to small values
of the learning rate.
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Pitfalls of the Method of Gradient Descent

e Pitfall I: The search may end up in a local minimum.

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

o Pitfall Il: It may take a very long time for the method to converge.

@ Convex cost functions have only one minimum. E.g. in linear
regression.

e Exploration: means searching different parts of the “fitness
landscape” in search of the global minimum. Corresponds to a large
learning rate.

@ Exploitation: means using the regularity of the cost function to make
local improvements to the cost function. Corresponds to small values
of the learning rate.

@ More complex (or rugged) fitness landscapes need more exploration,
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Different types of Gradient Descent algorithms

e Batch Gradient Descent: uses the whole dataset to compute the
gradient at each step. Slow for large datasets!
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Different types of Gradient Descent algorithms

e Batch Gradient Descent: uses the whole dataset to compute the
gradient at each step. Slow for large datasets!

@ Stochastic Gradient Descent (SDG): uses a random instance to
compute the gradient at each step.
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Different types of Gradient Descent algorithms

e Batch Gradient Descent: uses the whole dataset to compute the
gradient at each step. Slow for large datasets!

@ Stochastic Gradient Descent (SDG): uses a random instance to
compute the gradient at each step.

@ Mimi-batch Gradient Descent: computes the gradient on small
random subsets of the training dataset (called mini-batches).
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@ Stochastic Gradient Descent (SDG): uses a random instance to
compute the gradient at each step.

@ Mimi-batch Gradient Descent: computes the gradient on small
random subsets of the training dataset (called mini-batches).

@ SGD is much faster than batch gradient descent.
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Different types of Gradient Descent algorithms

e Batch Gradient Descent: uses the whole dataset to compute the
gradient at each step. Slow for large datasets!

@ Stochastic Gradient Descent (SDG): uses a random instance to
compute the gradient at each step.

@ Mimi-batch Gradient Descent: computes the gradient on small
random subsets of the training dataset (called mini-batches).

@ SGD is much faster than batch gradient descent. Can be used in
online learning too.
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Different types of Gradient Descent algorithms

e Batch Gradient Descent: uses the whole dataset to compute the
gradient at each step. Slow for large datasets!

@ Stochastic Gradient Descent (SDG): uses a random instance to
compute the gradient at each step.

@ Mimi-batch Gradient Descent: computes the gradient on small
random subsets of the training dataset (called mini-batches).

@ SGD is much faster than batch gradient descent. Can be used in
online learning too.

@ For linear regression, this is equivalent to replacing
L(a) =Y, (atxx — yk)? with (axx — yk)? for a random k.
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Different types of Gradient Descent algorithms

e Batch Gradient Descent: uses the whole dataset to compute the
gradient at each step. Slow for large datasets!

@ Stochastic Gradient Descent (SDG): uses a random instance to
compute the gradient at each step.

@ Mimi-batch Gradient Descent: computes the gradient on small
random subsets of the training dataset (called mini-batches).

@ SGD is much faster than batch gradient descent. Can be used in
online learning too.

@ For linear regression, this is equivalent to replacing
L(a) =Y, (atxx — yk)? with (axx — yk)? for a random k.
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Stochastic Gradient Descent

92
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Figure: Credit: Aurelien Geron, Hands-on Machine Learning
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Stochastic Gradient Descent
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Figure: Credit: Aurelien Geron, Hands-on Machine Learning

@ SGD is much less regular than Batch GD.
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Stochastic Gradient Descent
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Figure: Credit: Aurelien Geron, Hands-on Machine Learning

@ SGD is much less regular than Batch GD. It also does not stop after
reaching a minimum.
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Figure: Credit: Aurelien Geron, Hands-on Machine Learning

@ SGD is much less regular than Batch GD. It also does not stop after
reaching a minimum. Less likely to get stuck in a local minimum.

Reza Rezazadegan (Sharif University) Introduction to ML October 16, 2022 11/18



Stochastic Gradient Descent

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

@ SGD is much less regular than Batch GD. It also does not stop after
reaching a minimum. Less likely to get stuck in a local minimum.

@ To make SGD stop after reaching a minimum, we use a learning
schedule i.e. decreasing the learning rate gradually.
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Stochastic Gradient Descent

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

@ SGD is much less regular than Batch GD. It also does not stop after
reaching a minimum. Less likely to get stuck in a local minimum.

@ To make SGD stop after reaching a minimum, we use a learning
schedule i.e. decreasing the learning rate gradually.

@ If nis the size of the training dataset, each round of n iterations of
the SGD is called an epoch.
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Stochastic Gradient Descent

Figure: Credit: Aurelien Geron, Hands-on Machine Learning

@ SGD is much less regular than Batch GD. It also does not stop after
reaching a minimum. Less likely to get stuck in a local minimum.

@ To make SGD stop after reaching a minimum, we use a learning
schedule i.e. decreasing the learning rate gradually.

@ If nis the size of the training dataset, each round of n iterations of
the SGD is called an epoch.

@ In each epoch, some datapoints may not be chosen at all while others
may be chosen several times.
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Stochastic Gradient Descent

92
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Figure: Credit: Aurelien Geron, Hands-on Machine Learning

@ SGD is much less regular than Batch GD. It also does not stop after
reaching a minimum. Less likely to get stuck in a local minimum.

@ To make SGD stop after reaching a minimum, we use a learning
schedule i.e. decreasing the learning rate gradually.

@ If nis the size of the training dataset, each round of n iterations of
the SGD is called an epoch.

@ In each epoch, some datapoints may not be chosen at all while others
may be chosen several times.

@ In Python, SGD is implemented as
sklearn.linear model.SGDRegressor
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Regularization

@ Regularization remedies overfitting and collinearity of features.
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@ Regularization remedies overfitting and collinearity of features.
@ Remember: if features are collinear then the design matrix Xt X may
not be invertible.
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Regularization

@ Regularization remedies overfitting and collinearity of features.
@ Remember: if features are collinear then the design matrix Xt X may

not be invertible.
@ A complex model has more parameters and uses more features. If the

training dataset is small, it is more likely that features are collinear.
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Regularization

@ Regularization remedies overfitting and collinearity of features.

@ Remember: if features are collinear then the design matrix Xt X may
not be invertible.

@ A complex model has more parameters and uses more features. If the
training dataset is small, it is more likely that features are collinear.

@ For example, polynomial regression of degree m, with d original
features, has a total of (mntd) features.
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Regularization

@ Regularization remedies overfitting and collinearity of features.

@ Remember: if features are collinear then the design matrix Xt X may
not be invertible.

@ A complex model has more parameters and uses more features. If the
training dataset is small, it is more likely that features are collinear.

@ For example, polynomial regression of degree m, with d original
features, has a total of (mntd) features.

e Tikhonov Regularization. If A is a singular linear operator then

A + al is invertible for small .
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Regularization

Regularization remedies overfitting and collinearity of features.
Remember: if features are collinear then the design matrix X*X may
not be invertible.

A complex model has more parameters and uses more features. If the
training dataset is small, it is more likely that features are collinear.
For example, polynomial regression of degree m, with d original
features, has a total of (m;d) features.

Tikhonov Regularization. If A is a singular linear operator then
A+ al is invertible for small «. This is because determinant function

is continuous!
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Regularization

Regularization remedies overfitting and collinearity of features.
Remember: if features are collinear then the design matrix X*X may
not be invertible.
A complex model has more parameters and uses more features. If the
training dataset is small, it is more likely that features are collinear.
For example, polynomial regression of degree m, with d original
features, has a total of (m;d) features.
Tikhonov Regularization. If A is a singular linear operator then
A+ al is invertible for small «. This is because determinant function
is continuous!
Ridge Regression

a=(X'X+al) Xy (3)

« is a hyperparameter.
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Regularization

Regularization remedies overfitting and collinearity of features.
Remember: if features are collinear then the design matrix X*X may
not be invertible.
A complex model has more parameters and uses more features. If the
training dataset is small, it is more likely that features are collinear.
For example, polynomial regression of degree m, with d original
features, has a total of (m;d) features.
Tikhonov Regularization. If A is a singular linear operator then
A+ al is invertible for small «. This is because determinant function
is continuous!
Ridge Regression

a=(X'X+al) Xy (3)
a is a hyperparameter.
Ridge regression corresponds to the cost function

1 1
Lrigge(a) = —[[a"X — y||* + Sal[a]|* (4)
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Ridge Regression

@ This cost function penalizes against larger parameter values.
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Ridge Regression

@ This cost function penalizes against larger parameter values.
@ By restricting the degrees of freedom in the model, it reduces the
chance of overfitting,.
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Ridge Regression

@ This cost function penalizes against larger parameter values.

@ By restricting the degrees of freedom in the model, it reduces the
chance of overfitting,.

@ Increasing « increases bias but decreases variance.
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Ridge Regression

@ This cost function penalizes against larger parameter values.

@ By restricting the degrees of freedom in the model, it reduces the
chance of overfitting,.

@ Increasing « increases bias but decreases variance.

@ Gradient Descent for Ridge regression: the gradient of the cost

function for Ridge Regression is given by adding 2aa to the gradient
of L(a).
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Ridge Regression

@ This cost function penalizes against larger parameter values.

@ By restricting the degrees of freedom in the model, it reduces the
chance of overfitting,.

@ Increasing « increases bias but decreases variance.

@ Gradient Descent for Ridge regression: the gradient of the cost
function for Ridge Regression is given by adding 2aa to the gradient
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Figure: Credit: A. Geron, Hands-on Machine Learning

Reza Rezazadegan (Sharif University) Introduction to ML October 16, 2022 13 /18



Ridge Regression

@ This cost function penalizes against larger parameter values.

@ By restricting the degrees of freedom in the model, it reduces the
chance of overfitting,.

@ Increasing « increases bias but decreases variance.

@ Gradient Descent for Ridge regression: the gradient of the cost
function for Ridge Regression is given by adding 2aa to the gradient
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Figure: Credit: A. Geron, Hands-on Machine Learning

@ In Python, the closed-form solution to Ridge regression is provided by
sklearn.linear model.Ridge
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This cost function penalizes against larger parameter values.

By restricting the degrees of freedom in the model, it reduces the
chance of overfitting,.

Increasing « increases bias but decreases variance.

Gradient Descent for Ridge regression: the gradient of the cost
function for Ridge Regression is given by adding 2aa to the gradient

of L(a).

@ In Python, the closed-form solution to Ridge regression is provided by

sklearn.linear model.Ridge and its SGD version is provided as
SGDRe

Ridge Regression

---------------
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Lasso Regression

@ LASSO regression uses ¢1 norm of a instead of /5, for regularization:

n

d

1

LLasso(a) — ; E :(atX _ y)2 + o § :|aj|' (5)
i=1 j=1
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Lasso Regression

@ LASSO regression uses ¢1 norm of a instead of /5, for regularization:

n d
LLasso(a) = 1 Z(atX - Y)Z + o Z |aj|' (5)
j=1

n <
=1

@ The penalty term in Lasso regression forces the coefficients a;
corresponding unnecessary/unimportant features to go to zero.
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Lasso Regression

@ LASSO regression uses ¢1 norm of a instead of /5, for regularization:

n <
=1

d
1 o )
Liasso(a) == (@'X —y)>+a ) |aj- (5)
Jj=1
@ The penalty term in Lasso regression forces the coefficients a;
corresponding unnecessary/unimportant features to go to zero. Thus,
it does automatic feature selection for us!
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@ LASSO regression uses ¢1 norm of a instead of /5, for regularization:

n d
1
LLasso(a) = ; E (atX - Y)Z e’ E |aj| (5)
i=1 j=1

@ The penalty term in Lasso regression forces the coefficients a;

corresponding unnecessary/unimportant features to go to zero. Thus,
it does automatic feature selection for us!

@ Lasso regression gives us a sparse model meaning a model in which
there are a few nonzero weights.
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Lasso Regression

@ LASSO regression uses ¢1 norm of a instead of /5, for regularization:

n

d

1

LLasso(a) — ; E :(atX _ y)2 + o E :|aj|' (5)
i=1 j=1

@ The penalty term in Lasso regression forces the coefficients a;
corresponding unnecessary/unimportant features to go to zero. Thus,
it does automatic feature selection for us!

@ Lasso regression gives us a sparse model meaning a model in which
there are a few nonzero weights.

@ Sparse models are more explainable because the relation between the
features and the target variable is easier to see.
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Gradient Descent for Lasso Regression

@ The Lasso cost function is not differentiable when a; = 0 for some 1.
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@ The Lasso cost function is not differentiable when a; = 0 for some 1.
But it has a subgradient.
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Gradient Descent for Lasso Regression

@ The Lasso cost function is not differentiable when a; = 0 for some 1.
But it has a subgradient. A subgradient for a convex function L at a
point a is a vector v such that

L(b) — L(a) > v'(b — a) (6)
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Gradient Descent for Lasso Regression

@ The Lasso cost function is not differentiable when a; = 0 for some 1.
But it has a subgradient. A subgradient for a convex function L at a
point a is a vector v such that

L(b) — L(a) > v'(b — a) (6)

@ For the /1 norm, the subgradient at nondifferentiable points can be
given by (sign(ay), sign(az), ..., sign(aq)).
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Gradient Descent for Lasso Regression

@ The Lasso cost function is not differentiable when a; = 0 for some 1.
But it has a subgradient. A subgradient for a convex function L at a
point a is a vector v such that

L(b) — L(a) > v'(b — a) (6)

@ For the /1 norm, the subgradient at nondifferentiable points can be
given by (sign(ay), sign(az), ..., sign(aq)).

@ In Scikit-Learn, Lasso regression is provided by
SGDRegressor (penalty="11")
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Elastic Net Regularization

@ |t is preferable to regularize regression models such as Ridge
Regression.
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Elastic Net Regularization

@ |t is preferable to regularize regression models such as Ridge
Regression.

@ If you it seems that only a few of the features are important, use
Lasso or Elastic Net.
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Elastic Net Regularization

@ |t is preferable to regularize regression models such as Ridge
Regression.

@ If you it seems that only a few of the features are important, use
Lasso or Elastic Net.

@ Lasso’s behavior may be erratic if we have more features than training
Instances.

Reza Rezazadegan (Sharif University) Introduction to ML October 16, 2022 16 /18



Elastic Net Regularization

@ |t is preferable to regularize regression models such as Ridge
Regression.

@ If you it seems that only a few of the features are important, use
Lasso or Elastic Net.

@ Lasso’s behavior may be erratic if we have more features than training
Instances.

@ Elastic Net regularization uses a linear combination of Ridge and
LASSO penalty terms:

1—r
2

a-|lafle, + o - |fallf, (7)

where 0 < r <1
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