1-Introduction to Machine Learning

Reza Rezazadegan

Sharif University of Technology

October 1, 2022

Reza Rezazadegan (Sharif University)

Introduction to ML

October 1, 2022

Course info

Machine Learning course at the Department of Mathematics, Sharif University, Fall 2022

- Instructor: Reza Rezazadegan
- Course webpage: www.rezazadegan.ir/MLcourse

Pre-requisites: familiarity with linear algebra, multivariable calculus, probability theory and basic Python programming **Texts:**

- Rezazadegan, Applications of Artificial Intelligence and Big Data in Industry 4.0 Technologies, in Industry 4.0 Vision for Energy and Materials: Enabling Technologies and Case Studies, Wiley, 2022
- Blum, et al, Foundations of Data Science
- Aurelien Geron, Hands-on Machine Learning with Scikit-Learn

TAs: Ali Bagheri, Qazal Farahani

 $\label{eq:code:code} \begin{array}{l} \textbf{Code:} \ \mbox{Jupyter notebooks used in this course are available at} \\ www.github.com/rezareza007/MLcourse \end{array}$

Evaluation: by student projects or presentation

• Al is enabling machines, in particular computers, to do "smart" things, as humans do. Such as recognizing faces, filtering spam, driving cars,...

- Al is enabling machines, in particular computers, to do "smart" things, as humans do. Such as recognizing faces, filtering spam, driving cars,...
- Intelligence can be defined as the ability to learn from experience and generalize.

- Al is enabling machines, in particular computers, to do "smart" things, as humans do. Such as recognizing faces, filtering spam, driving cars,...
- Intelligence can be defined as the ability to learn from experience and generalize.
- Three branches of AI: Symbolic AI, Machine Learning, Neural Networks

- Al is enabling machines, in particular computers, to do "smart" things, as humans do. Such as recognizing faces, filtering spam, driving cars,...
- Intelligence can be defined as the ability to learn from experience and generalize.
- Three branches of AI: Symbolic AI, Machine Learning, Neural Networks
- **Symbolic AI:** intelligence can be reduced to manipulation of symbols, in particular, logic (e.g. expert systems).

- Al is enabling machines, in particular computers, to do "smart" things, as humans do. Such as recognizing faces, filtering spam, driving cars,...
- Intelligence can be defined as the ability to learn from experience and generalize.
- Three branches of AI: Symbolic AI, Machine Learning, Neural Networks
- **Symbolic AI:** intelligence can be reduced to manipulation of symbols, in particular, logic (e.g. expert systems).
- Machine Learning (ML) means enabling computers to learn from data, without having to code for each individual case.

- Al is enabling machines, in particular computers, to do "smart" things, as humans do. Such as recognizing faces, filtering spam, driving cars,...
- Intelligence can be defined as the ability to learn from experience and generalize.
- Three branches of AI: Symbolic AI, Machine Learning, Neural Networks
- **Symbolic AI:** intelligence can be reduced to manipulation of symbols, in particular, logic (e.g. expert systems).
- Machine Learning (ML) means enabling computers to learn from data, without having to code for each individual case.
- For example face or fingerprint recognition, speech recognition, guessing the next work in a text,...

- Al is enabling machines, in particular computers, to do "smart" things, as humans do. Such as recognizing faces, filtering spam, driving cars,...
- Intelligence can be defined as the ability to learn from experience and generalize.
- Three branches of AI: Symbolic AI, Machine Learning, Neural Networks
- **Symbolic AI:** intelligence can be reduced to manipulation of symbols, in particular, logic (e.g. expert systems).
- Machine Learning (ML) means enabling computers to learn from data, without having to code for each individual case.
- For example face or fingerprint recognition, speech recognition, guessing the next work in a text,...
- Neural Networks and Deep Learning: tries to mimic the working of neurons in the brain; hierarchically reduces a given problem into simpler ones.

Reza Rezazadegan (Sharif University)

• ML methods can "learn" (i.e. estimate) complex relations among the quantities in the data.

э

- ML methods can "learn" (i.e. estimate) complex relations among the quantities in the data.
- Difference between ML and science: Science starts with principles i.e. clear-cut relationships between some quantities such as F = ma.

- ML methods can "learn" (i.e. estimate) complex relations among the quantities in the data.
- Difference between ML and science: Science starts with principles i.e. clear-cut relationships between some quantities such as F = ma.
- Relations between quantities are not clear-cut in real life: the temperature of a room as a function of heater degree and duration or operation. Or currency exchange rate as a function of time.
- Computers can only understand numbers. Categories, text, images, videos and sound can be turned into numbers. (Won't be covered in this course, except for categories.)

- ML methods can "learn" (i.e. estimate) complex relations among the quantities in the data.
- Difference between ML and science: Science starts with principles i.e. clear-cut relationships between some quantities such as F = ma.
- Relations between quantities are not clear-cut in real life: the temperature of a room as a function of heater degree and duration or operation. Or currency exchange rate as a function of time.
- Computers can only understand numbers. Categories, text, images, videos and sound can be turned into numbers. (Won't be covered in this course, except for categories.)
- Two types of numerical data:
 - Data with units e.g. blood pressure, temperature of a furnace
 - Raw e.g. the pixel values of an image

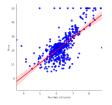
- ML methods can "learn" (i.e. estimate) complex relations among the quantities in the data.
- Difference between ML and science: Science starts with principles i.e. clear-cut relationships between some quantities such as F = ma.
- Relations between quantities are not clear-cut in real life: the temperature of a room as a function of heater degree and duration or operation. Or currency exchange rate as a function of time.
- Computers can only understand numbers. Categories, text, images, videos and sound can be turned into numbers. (Won't be covered in this course, except for categories.)
- Two types of numerical data:
 - Data with units e.g. blood pressure, temperature of a furnace
 - Raw e.g. the pixel values of an image
- Raw data is more suitable for neural networks and deep learning.

AI as function approximation

• Al is, simply put, approximating functions and relations!

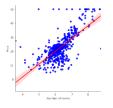
Al as function approximation

• Al is, simply put, approximating functions and relations! If we know the values of f at points $x_1, x_2, ..., x_n$ then how can we infer f(x) for general x?



Al as function approximation

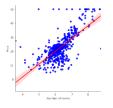
• Al is, simply put, approximating functions and relations! If we know the values of f at points $x_1, x_2, ..., x_n$ then how can we infer f(x) for general x?



- Examples of f:
 - Gives us the probability of a loan applicant defaulting, based on his/her demographic and financial data.
 - Takes an image as an input and tells us what objects or faces are in it
 - Tells us the stock prices as function of (future) time

Al as function approximation

• Al is, simply put, approximating functions and relations! If we know the values of f at points $x_1, x_2, ..., x_n$ then how can we infer f(x) for general x?



- Examples of f:
 - Gives us the probability of a loan applicant defaulting, based on his/her demographic and financial data.
 - Takes an image as an input and tells us what objects or faces are in it
 - Tells us the stock prices as function of (future) time
- Function spaces are infinite dimensional! To approximate functions (or relationships) we need to make an assumption on the function i.e. assuming it belongs to a parametric family of functions.

• Assuming the function *f* is linear or polynomial: Linear or polynomial regression!

- Assuming the function *f* is linear or polynomial: Linear or polynomial regression!
- Assuming *f* is a linear combination of a set of basis functions: **Support Vector Machines!**

$$f(x) = a_0 + a_1 K(x, x_1) + a_2 K(x, x_2) + \dots + a_n K(x, x_n)$$
(1)

- Assuming the function *f* is linear or polynomial: Linear or polynomial regression!
- Assuming *f* is a linear combination of a set of basis functions: **Support Vector Machines!**

$$f(x) = a_0 + a_1 K(x, x_1) + a_2 K(x, x_2) + \dots + a_n K(x, x_n)$$
(1)

• Assuming f is a composition of functions of the form $\phi(z_1, z_2, ..., z_k) = h(\sum_i a_i z_i)$, where h is a nonlinear function: Neural Networks and Deep Learning!

- Assuming the function *f* is linear or polynomial: Linear or polynomial regression!
- Assuming *f* is a linear combination of a set of basis functions: **Support Vector Machines!**

$$f(x) = a_0 + a_1 K(x, x_1) + a_2 K(x, x_2) + \dots + a_n K(x, x_n)$$
(1)

• Assuming f is a composition of functions of the form $\phi(z_1, z_2, ..., z_k) = h(\sum_i a_i z_i)$, where h is a nonlinear function: Neural Networks and Deep Learning!

- Assuming the function *f* is linear or polynomial: Linear or polynomial regression!
- Assuming *f* is a linear combination of a set of basis functions: **Support Vector Machines!**

$$f(x) = a_0 + a_1 K(x, x_1) + a_2 K(x, x_2) + \dots + a_n K(x, x_n)$$
(1)

• Assuming f is a composition of functions of the form $\phi(z_1, z_2, ..., z_k) = h(\sum_i a_i z_i)$, where h is a nonlinear function: Neural Networks and Deep Learning!

Assuming the value of f at a new point x is the average of f(x_i) where x_i are the nearest neighbors of x: k-Nearest Neighbors!

- Assuming the function *f* is linear or polynomial: Linear or polynomial regression!
- Assuming *f* is a linear combination of a set of basis functions: **Support Vector Machines!**

$$f(x) = a_0 + a_1 K(x, x_1) + a_2 K(x, x_2) + \dots + a_n K(x, x_n)$$
(1)

• Assuming f is a composition of functions of the form $\phi(z_1, z_2, ..., z_k) = h(\sum_i a_i z_i)$, where h is a nonlinear function: Neural Networks and Deep Learning!

- Assuming the value of f at a new point x is the average of f(x_i) where x_i are the nearest neighbors of x: k-Nearest Neighbors!
- No Free Lunch theorem: without any assumptions on the data, no method is better than any other.

Reza Rezazadegan (Sharif University)

Introduction to ML

• Supervised Learning: Learning from labeled data.

- Supervised Learning: Learning from labeled data.
- Learning the relation between *independent variables* (Features) and the *target variable* (Label).

- Supervised Learning: Learning from labeled data.
- Learning the relation between *independent variables* (Features) and the *target variable* (Label).

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

- Supervised Learning: Learning from labeled data.
- Learning the relation between *independent variables* (Features) and the *target variable* (Label).

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

• The target variable can be discrete (classification) or continuous (regression).

- Supervised Learning: Learning from labeled data.
- Learning the relation between *independent variables* (Features) and the *target variable* (Label).

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

- The target variable can be discrete (classification) or continuous (regression).
- Most classification methods have a regression counterpart and vice versa.

- Supervised Learning: Learning from labeled data.
- Learning the relation between *independent variables* (Features) and the *target variable* (Label).

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

- The target variable can be discrete (classification) or continuous (regression).
- Most classification methods have a regression counterpart and vice versa.
- **Unsupervised Learning:** Learning from unlabeled data e.g. clustering or dimensional reduction.

- Supervised Learning: Learning from labeled data.
- Learning the relation between *independent variables* (Features) and the *target variable* (Label).

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

- The target variable can be discrete (classification) or continuous (regression).
- Most classification methods have a regression counterpart and vice versa.
- **Unsupervised Learning:** Learning from unlabeled data e.g. clustering or dimensional reduction.
- Reinforcement Learning: Optimizing the behavior of an agent in an environment. Used e.g. in automated playing of games e.g. chess, robotics,...

Reza Rezazadegan (Sharif University)

 Instance-based: prediction (inference) is done based on "similar" data instances. It needs to keep (a subset) of training data for prediction (inference).

- **Instance-based:** prediction (inference) is done based on "similar" data instances. It needs to keep (a subset) of training data for prediction (inference).
- Examples: KNN, Support Vector Machine

- Instance-based: prediction (inference) is done based on "similar" data instances. It needs to keep (a subset) of training data for prediction (inference).
- Examples: KNN, Support Vector Machine
- Model-based: learns a model (hypothesis) for the whole dataset.

- Instance-based: prediction (inference) is done based on "similar" data instances. It needs to keep (a subset) of training data for prediction (inference).
- Examples: KNN, Support Vector Machine
- Model-based: learns a model (hypothesis) for the whole dataset.
- Examples: Linear regression, neural networks

- **Instance-based:** prediction (inference) is done based on "similar" data instances. It needs to keep (a subset) of training data for prediction (inference).
- Examples: KNN, Support Vector Machine
- Model-based: learns a model (hypothesis) for the whole dataset.
- Examples: Linear regression, neural networks
- Rule-based: Learns a bunch of rules, each for a subset of the data.
- Examples: Learning classifier systems, association rule mining

AI Explainability

• ML methods need to be **explainable** i.e. we need to understand how an AI method arrives at a conclusion.

AI Explainability

- ML methods need to be **explainable** i.e. we need to understand how an AI method arrives at a conclusion.
- Black-box AI can be a fool!

Figure: Image classifier is still confident about its predictions when 95% of the picture is removed! Source: B. Carter *et al.*, "What made you do this? Understanding black-box decisions with sufficient input subsets"

AI Explainability

- ML methods need to be **explainable** i.e. we need to understand how an AI method arrives at a conclusion.
- Black-box AI can be a fool!

Figure: Image classifier is still confident about its predictions when 95% of the picture is removed! Source: B. Carter *et al.*, "What made you do this? Understanding black-box decisions with sufficient input subsets"

• The more parameters a model has, the less explainable it becomes!

э

- The more parameters a model has, the less explainable it becomes!
- John von Neuman: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

10/13

- The more parameters a model has, the less explainable it becomes!
- John von Neuman: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

• Always prefer the simplest methods that gets the job done! (Occam's Razor)

Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D.

Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.

- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.

- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.
- Accuracy for regression: $R^2 = \sum_i (y_i f(x_i))^2$.

- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.
- Accuracy for regression: $R^2 = \sum_i (y_i f(x_i))^2$.
- Accuracy for classification: the fraction of correct predictions (true positives): TP/(TP + FP).

- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.
- Accuracy for regression: $R^2 = \sum_i (y_i f(x_i))^2$.
- Accuracy for classification: the fraction of correct predictions (true positives): TP/(TP + FP).
- A good model is one that generalizes well to unseen data i.e. is accurate on data not in the training data, as well.

- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.
- Accuracy for regression: $R^2 = \sum_i (y_i f(x_i))^2$.
- Accuracy for classification: the fraction of correct predictions (true positives): TP/(TP + FP).
- A good model is one that generalizes well to unseen data i.e. is accurate on data not in the training data, as well.
- Thus, data is divided into training set and test set.

11/13

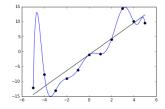
- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.
- Accuracy for regression: $R^2 = \sum_i (y_i f(x_i))^2$.
- Accuracy for classification: the fraction of correct predictions (true positives): TP/(TP + FP).
- A good model is one that generalizes well to unseen data i.e. is accurate on data not in the training data, as well.
- Thus, data is divided into *training set* and *test set*.
- Typically 10% to 30% of data is reserved for test.

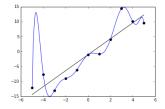
- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.
- Accuracy for regression: $R^2 = \sum_i (y_i f(x_i))^2$.
- Accuracy for classification: the fraction of correct predictions (true positives): TP/(TP + FP).
- A good model is one that generalizes well to unseen data i.e. is accurate on data not in the training data, as well.
- Thus, data is divided into *training set* and *test set*.
- Typically 10% to 30% of data is reserved for test.
- A model that has high accuracy on the training set but low accuracy on the test set suffers from *overfitting*.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Remember: we have a dataset: D = {(x_i, y_i)}, x_i ∈ ℝⁿ and we want a model f(x) that predicts the label y for x ∉ D. The components of the x_i are called *features* and the y_i are called the *labels* of the data.
- Accuracy in supervised learning measures how good a classification or regression model *f* fits the training data.
- Accuracy for regression: $R^2 = \sum_i (y_i f(x_i))^2$.
- Accuracy for classification: the fraction of correct predictions (true positives): TP/(TP + FP).
- A good model is one that generalizes well to unseen data i.e. is accurate on data not in the training data, as well.
- Thus, data is divided into *training set* and *test set*.
- Typically 10% to 30% of data is reserved for test.
- A model that has high accuracy on the training set but low accuracy on the test set suffers from *overfitting*.

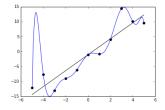
A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



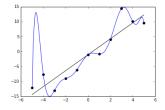


• Overfitting happens when we train a complex model on a small dataset.

12/13



- Overfitting happens when we train a complex model on a small dataset.
- To avoid overfitting we should use simpler models or more data.



- Overfitting happens when we train a complex model on a small dataset.
- To avoid overfitting we should use simpler models or more data.
- We can also train more than one model together (Multi-task Learning).

- A model's *bias* is part of its generalization error which is due to wrong assumptions.
- A model's *variance* is its sensitivity to small variations in data.
- Bias-variance tradeoff: simpler models tend to have more bias while more complex models tend to have more variance.